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Abstract—Interests in monitoring and recognizing gait have surged significantly over the past decades. Traditional approaches rely on
camera array, floor sensors (e.g., pressure mats), or wearables (e.g., accelerometers), none of which are suitable for continuous and
ubiquitous everyday use. In this paper, we present GAITWAY, the first system that monitors and recognizes an individual’s gait through
the walls via wireless radios. GAITWAY passively and unobtrusively monitors an individual’s gait speed by a single pair of commodity
WiFi transceivers, without requiring the user to wear any device or walk on a restricted walkway. On this basis, GAITWAY automatically
identifies stable walking periods, extracts physically plausible and environmentally irrelevant speed features, and accordingly
recognizes a subject’s gait. Built upon a distinct rich-scattering multipath model, GAITWAY can capture one’s gait speed when one is
>10 meters away behind the walls. We conduct experiments in a typical indoor space and perform eight sessions of data collection
with 11 subjects across 6 months, resulting in >5,000 gait instances. The results show that GAITWAY achieves a median 0.12 m/s and
90%tile 0.35 m/s error in speed estimation, with a mean error of 3.36 cm in stride lengths. Further, it achieves a verification rate of
90.4% and a recognition rate of 81.2% for five users and 69.8% for 11 users, confirming its comfort and accuracy for continuous and
ubiquitous use.

Index Terms—Gait Recognition; WiFi Sensing; Speed Estimation; Human Identification
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1 INTRODUCTION

GAIT, an individual’s way of walking, is increasingly
perceived as not only an essential vital sign [14], [30]

but also an effective biometric marker [8]. On the one hand,
gait, in particular, the walking speed, is considered as a
valid and sensitive measure appropriate for monitoring and
assessing functional decline and general health [14], [30],
leading to its designation as the sixth vital sign. Gait reflects
both functional and physiological changes, and is indicative
and predictive of many health statuses, including mobil-
ity disability, response to rehabilitation, falls, and cognitive
decline, etc [30]. Progression of gait is related to clinically
meaningful changes in life quality and health conditions.
Therefore, continuous monitoring of gait at home, rather
than occasionally in-hospital clinical testing, is of great in-
terest to an individual’s healthcare.

On the other hand, gait provides distinctive biomet-
ric features of an individual, underlying a promising way
of human identification. As a complex functional activity,
many factors influence one’s gait, rendering it as a unique
behavioral trait. Research has shown that gait recognition
could be even more reliable than face recognition [41], be-
cause there are tens of identifying characteristics entangled
in gait, making it extremely difficult, if possible, to imper-
sonate someone else’s walking patterns. Compared with
other human recognition systems, gait recognition is par-
ticularly attractive since it can operate remotely, passively,
and non-intrusively, without any active cooperation of indi-
viduals.

Existing gait measurement and recognition systems usu-
ally rely on cameras [18], floor sensors [41], and/or wear-
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ables [8] to capture gait information. The target subjects
have to either walk within restricted areas (typically only
an instrumented walkway) or wear body sensors (e.g., ac-
celerometers). Therefore, they are mainly limited to research
and clinical usage and are not convenient and comfortable
enough for ubiquitous applications in smart homes and
smart buildings.

In contrast to the above systems, we attempt to sense
gait using ambient radio signals. Recently, a new type of
gait recognition using wireless signals (e.g., WiFi) is on the
horizon [49], [64], [68]. Existing approaches, however, ei-
ther use specialized devices [20] or require subjects to walk
on a predefined path in a predefined direction [49], [59],
[63]. Hence they are only suitable for confined areas (e.g.,
a 5m corridor-like narrow path [49]) with a strong Line-
Of-Sight (LOS) condition. Moreover, most of the existing
works do not measure physiological gait [64], [29], [59],
[27], [68], [63]. They merely extract RF-based features that
are related to walking motions, making them location- and
environment-dependent since the RF features are entangled
with the surrounding environments. And most importantly,
none of these WiFi-based systems can work for Non-LOS
(NLOS) scenarios.

In this paper, we present GAITWAY, the first system
that can monitor and recognize an individual’s gait through
the walls. Leveraging the pervasive WiFi signals, GAITWAY
works in a non-intrusive and contactless manner. There is
no need to instrument the user’s body or physical environ-
ments. The user is neither required to keep walking on a
designated path. In contrast, one can freely walk, turn, sit,
or stand in the space. GAITWAY will automatically estimate
walking speeds, identify effective walking periods, and then
extract gait characteristics for recognition, even when the
user is as far as 10 meters away from the link or behind the
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Fig. 1: Multipath models for rich-scattering indoor envi-
ronments. (a) Objects (e.g., a human body) are simpli-
fied as a single reflector producing only one major reflec-
tion path. (b) Objects scatter the signal and produce many
paths.

walls. To achieve this, we overcome two critical challenges:
through-the-wall speed estimation and physical plausible gait fea-
ture extraction.

First, it is extremely challenging to estimate real-time
walking speed from radio signals. Previous approaches
resort to specialized hardware with large bandwidths
and many phased antennas [20]. Other approaches using
commodity WiFi typically attempt to extract speed from
Doppler effects [49], [40], [25]. The problems with Doppler
effects, however, are two-fold: (1) It only reflects partial
speed projected on a specific direction rather than the en-
tire speed [39]; and (2) It is suitable only for narrow LOS
area (typically within 4 to 5 m) [49], [39]. More generally
speaking, we realize that the fundamental limitation of past
works lies in the assumption of only a single dominate re-
flection path from the human body (known as the two-ray
reflection model [47] as shown in Fig. 1a), which is unrealistic
in rich-scattering indoor environments.

In contrast, we propose a scattering model (Fig. 1b),
which treats environmental objects as multiple scatters. We
mathematically reveal that, by the physics of electromag-
netic field [19], the Channel State Information (CSI) statis-
tically embodies the target’s moving speed when account-
ing for a number of scattering multipaths. Built upon [61],
we develop a statistical approach to derive speed from the
autocorrelation function (ACF) of CSI, which leverages the
statistical property of all multipaths everywhere, rather than a
dominant one, and thus is independent of locations, head-
ing directions, and the environments. Different from [61], we
largely boost the sensing performance and coverage by opti-
mally combining subcarriers using Maximal Ratio Combining
(MRC) [43], thus allowing speed monitoring at a distance of
up to 10 meters through the walls, which was only achieved
by specialized devices previously. Furthermore, our model
exploits extra phase information of CSI and is directly de-
rived based on complex CSI.

Second, it is non-trivial to build an accurate and robust
gait recognition system based on walking speed only. Con-
ventional gait recognition systems usually extract salient
characteristics dictated by body shape (e.g, silhouette by
multi-view gait images) [18], [23], foot shape (e.g., under-
foot pressure image by pressure mats) [7], [41], or multi-

dimensional accelerations measured at diverse body loca-
tions [65], [67], all providing much richer information be-
yond walking speed. In GAITWAY, however, only the walk-
ing speed is available, and the speed is captured without ex-
erting any constraints to the subject’s behaviors, making the
recognition even challenging. We address this challenge by
extracting various physically plausible and environmentally
irrelevant features that characterize different perspectives of
gait speed patterns, including gait symmetry, smoothness,
variability, periodicity, etc., from the walking speed.

Putting it all together, we implement GAITWAY on com-
modity off-the-shelf (COTS) WiFi devices and conduct ex-
periments in a typical office space covering 5,000 ft2. We
collect eight sessions of data from 11 subjects on differ-
ent days across six months. Most of the data are collected
under NLOS conditions. GAITWAY achieves a median 0.12
m/s and 90%tile 0.35 m/s error in gait speed monitoring,
with a mean error of 3.36 cm for stride lengths, significantly
outperforming previous WiFi-based approaches. GAITWAY
achieves a single user verification accuracy of 90.4% and
a recognition rate of 93.7% for two users, which becomes
81.2% for five users and 69.8% for 11 users. The inspiring
coverage and accuracy envision GAITWAY as a new way for
convenient gait monitoring and recognition in ubiquitous
contexts.

In summary, we make the following contributions.

• We derive a statistical approach on top of a scattering
multipath model for passive speed estimation, which
can capture accurate speed when a target is over 10
meters away, or behind the walls.

• We build a gait speed monitoring and recognition
system. By extracting a range of plausible physical
features, GAITWAY can recognize a subject indepen-
dently from location, orientation, environments, and
the user’s apparel.

• We implement a prototype of GAITWAY on COTS
WiFi devices and conduct experiments in typical in-
door spaces. The results confirm its accuracy and
comfort for continuous and ubiquitous use.

The rest of the paper is organized as follows. We present
the preliminaries on gait in §2. Speed estimation is intro-
duced in §3, followed by gait extraction and recognition in
§4. We present evaluation in §5, review the literature in §6
and conclude in §7.

2 PRELIMINARIES ON GAIT SPEED

Gait refers to the way of walking. Walking is a simple yet
finely choreographed function, harmonizing many muscles
over a complex bone and joint structure to deliver biome-
chanical locomotion. A gait cycle consists of two phases: the
stance and swing phases, and further seven stages [23]. Gait,
especially gait speed, can serve as a vital sign as well as a
biometric cue.
Monitoring gait as a vital sign. Gait has been shown to re-
flect health and functional status [14], [30]. Gait speed, also
often termed walking speed, is the most important infor-
mation being measured and concerned for healthcare. It has
been recommended as a pragmatic and essential clinical in-
dicator of well-being [14]. Research findings have confirmed
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that gait speed is indicative and predictive of a range of
outcomes, such as frailty [4], mobility disability [5], cogni-
tive decline [1], falls [31], hospitalization [31], [5], as well
as all-cause mortality [45]. Degradation in gait speed corre-
lates with lower quality of life, increased risk in falls, and
presence of depressive symptoms, etc. Due to its extensive
predictive capabilities, gait speed was termed the sixth vital
sign in 2009 [14], and after that, clinical and research practice
continues to support this designation [30].

Gait monitoring is particularly crucial for eldercare since
an increasing population of seniors is living alone (13 mil-
lion in the US [35] and 6 million in Japan [36]) in today’s
aging society. For them, gait speed offers a passively mea-
surable metric that is clinically interpretable for an assess-
ment of fall risk, functional status, and ability to live in-
dependently, etc. A continuous and comfortable system for
ubiquitous gait speed measurement, however, lacks.
Recognizing gait as a biometric cue. Gait recognition has
been studied since the late 1960s [33], [9]. Since then, a num-
ber of studies have objectively affirmed that gait is suffi-
ciently consistent for a healthy individual and distinctive
between individuals [8]. Gait recognition is particularly ap-
pealing for a range of ubiquitous applications that need
human identification since it can be achieved at a distance
without any active user cooperation. For example, a smart
home would personalize the temperature and ambient light
for a recognized user. A smart TV therein would react with
her favorite programs. Smart home devices like Google
Home and Amazon Alexa could directly interact with her
in a more friendly way. For all of these to function, the user
needs to do nothing but walk habitually inside the space.
An easy-to-deploy and convenient system, however, is de-
manded for continuous and passive gait recognition.

Most existing gait recognition systems use extensive gait
information, especially biomechanical features pertaining to
the body’s physical dimensions, shapes, and muscle contrac-
tion forces. For example, silhouettes from a video sequence
[12], [17] and underfoot pressure images [14], [41] have been
widely used. These systems are reliable, however, not eco-
nomic and user-friendly.

In this work, we aim to build a system that continu-
ously monitors and recognizes an individual’s gait, without
the need of exerting any constraints on the user, requiring
any active cooperation from her, or instrumenting the walk-
way. The primary design goal of GAITWAY is to provide ev-
eryday monitoring of gait speed as health data and enable
recognition with gait speed alone for non-critical applica-
tions by reusing existing WiFi infrastructure. As a contact-
less and sensorless system, it would be attractive to various
applications such as monitoring walking speed progression
of elders living alone, recognition of family members in a
house (e.g., for identifying a child from adults for TV con-
tent filtering), and automating personalized adjustment of
environment conditions for an identified user, etc.

3 SPEED ESTIMATION THROUGH THE WALLS

3.1 Rich Scattering Multipath Model

Limitation of existing models. Existing works on WiFi-
based speed estimation rely on precise channel parameters,

in particular, the Doppler Frequency Shift (DFS) [49], [50],
[40], [25]. The limitations are two-fold.

First, as dictated by [39], DFS induced by human motion
is not only related to the motion speed but also depends on
the relative location and direction with respect to the link.
Specifically, DFS only embodies the radial speed component
projected on the normal direction of the ellipse with the Tx
and Rx as foci. In an extreme case, if a user is walking on
an ellipse with two foci at the locations of the Tx and Rx, no
DFS will be observed, regardless of the walking speed.

Second, since DFS is a channel parameter of the reflec-
tion path, which is usually of magnitude weaker than a LOS
path, it can be easily buried in channel noises and thus not
perceivable, especially when numerous multipaths present.
Because of this, all existing works are limited to only nar-
row areas in which both the Tx and Rx can see the moving
target [50], [39], [40], [25].

More fundamentally speaking, existing approaches are
based on a reflection model, as shown in Fig. 1a. The hu-
man body is simplified as a single reflector, producing only
one dominant reflection path. DFS caused by human move-
ments is then equivalently derived as the change rates of
this particular reflection path [50], [39]. Such a two-ray re-
flection model, however, was developed for outdoor propa-
gation and is unrealistic for rich multipath indoor environ-
ments [47]. Typically there are multiple reflection paths off
a human body, which are, however, ignored. And the more
multipaths there are, the worse such reflection models can
work.
Proposed rich scattering model. In contrast to past works,
we investigate a distinct rich scattering model. As shown in
Fig. 1b, the human body is seen as multiple scatterers, which
reflect signals in diverse directions and superimpose at the
Tx together with signals scattered by other objects via many
paths. Given numerous multipaths, we do not geometrically
analyze a specific reflection path nor assume a dominant one
and ignore others. Instead, we statistically investigate the
channel properties by accounting for all multipaths together.
Our key finding is that, by the physics of EM fields, the tar-
get’s moving speed can be calculated from the ACF of CSI.
Built upon the statistical property of numerous multipaths,
our method is independent of the environments, locations,
and user orientations. In contrast to the previous reflection
model that fails in rich multipath environments, the pro-
posed model works even better with more multipaths and
supports through-the-wall sensing.

3.2 Passive Speed Tracking

CSI primer. Consider a wireless transmission pair, each
equipped with omni-directional antennas. The channel fre-
quency response (CFR), also called the channel state infor-
mation (CSI), for the multipath channel at time t is generally
modeled as

H(t, f) =
L∑
l=1

al(t)exp(−j2πfτl(t)), (1)

where al(t) and τl(t) denote the complex amplitude and
propagation delay of the l-th multipath component (MPC),
respectively, and L stands for the number of MPCs.
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Due to the timing and frequency synchronization offsets
and additive thermal noise, the real measurement of CFR
H̃(t, f) is expressed as

H̃(t, f) = exp(−j(α(t) + β(t)f))H(t, f) + n(t, f), (2)

where α(t) and β(t) are the random initial and linear phase
distortions at time t, respectively.
Modeling dynamic scattering. In the following, we build a
statistical model inspired by the physical properties of EM
fields [19] and a previous work [61], which eventually al-
lows us to derive speed from CSI. We present the core tech-
niques but omit the detailed derivations due to space limi-
tations.

The radio signals are scattered by numerous scatterers,
such as walls, ceilings, floors, furniture, human bodies, etc.
Due to the superposition principle of EM waves, the CSI
H(t, f) can be decomposed as

H(t, f) =
∑

i∈Ωs(t)

Hi(t, f) +
∑

j∈Ωd(t)

Hj(t, f) + ε(t, f), (3)

where Ωs(t) denotes the set of static scatterers, Ωd(t) de-
notes the set of dynamic scatterers, and Hi(t, f) stands for
the part contributed by the i-th scatterer. ε(t, f) is the noise
term, which can be approximated as additive white Gaus-
sian noise (AWGN) with variance σ2(f) and is statistically
independent of Hi(t, f) [61]. The intuition behind the de-
composition is that each scatterer can be treated as a “vir-
tual Tx” diffusing the received EM waves in all directions,
and then these EM waves add up together at the receive an-
tenna after bouncing off the interior objects indoors. As a re-
sult, H(t, f) actually measures the sum of the electric fields
of all the incoming EM waves. In practice, within a suffi-
ciently short period, it is reasonable to assume that both
the sets Ωs(t) and Ωd(t) change slowly in time, and they
can be approximated as time-invariant sets. Although past
works based on the reflection model also divide multipaths
into static and dynamic paths (rather than scatter sets) [50],
[39], they assume only one dominate dynamic path, and the
above statistical properties do not hold.

We consider a 2-D scattering model, where all the scatter-
ers are within the same horizontal plane. Due to the channel
reciprocity, EM waves traveling in both directions undergo
the same physical perturbations (i.e., reflection, refraction,
diffraction, etc.). Therefore, if the receiver were transmitting
EM waves, the CSI “measured” at the i-th scatterer or “vir-
tual Tx” would be identical to Hi(t, f). If the speed of the
i-th scatterer is vi, then a continuous limit representation of
Hi(t, f) can be expressed as [19]

Hi(t, f) =

∫ 2π

0
Fi(θ, f) exp (−jkvi cos(θ)t) dθ, (4)

where Fi(θ, f) denotes the complex channel gain of the
MPC from direction θ for the i-th scatterer, and k = 2π

λ
is the wave number where λ is the wavelength.
Statistical derivation of speed. Based on the well-
established statistical theory of EM fields developed for re-
verberation cavities, which approximates indoor environ-
ments well, Fi(θ, f), for ∀i, can be represented as a random
variable with the following properties [19]:

1) For ∀θ, Fi(θ, f) is a circularly-symmetric Gaussian
random variable with the same variance σ2

F (f);
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Fig. 2: Example of the combined speed signal. (a) Com-
bined speed signal and (b) its difference; (c) Matrix of
combined speed signals and (d) matrix of their differ-
ences.

2) For ∀θ1 6= θ2, Fi(θ1, f) and Fi(θ2, f) are statistically
independent;

3) For ∀i 6= j ∈ Ωd, Fi(θ1, f) and Fj(θ2, f) are statisti-
cally independent for ∀θ1 and ∀θ2.

With the above properties, now we investigate how the
ACF of CSI relates to the speed vi. The mean of Hi(t, f)
equals to zero, i.e., E[Hi(t, f)] = 0, where E[·] denotes the
expectation operator. Then, the covariance of two CSIs with
time lag τ can be written as [61]

Cov [Hi(t, f), Hi(t+ τ, f)] = E [Hi(t, f)H∗i (t+ τ, f)]

= 2πσ2
Fi

(f)J0(kviτ), (5)

where J0(·) is the 0th-order Bessel function of the first
kind [52]: J0(x) = 1

2π

∫ 2π
0 exp(−jx cos(θ))dθ. The ACF of

Hi(t, f) with time lag τ , denoted as ρHi(τ, f), is derived as

ρHi(τ, f) =
Cov [Hi(t, f), Hi(t+ τ, f)]

Cov [Hi(t, f), Hi(t, f)]

= J0(kviτ). (6)

Similarly, the ACF of the CSI H(t, f) with time lag τ , de-
noted as ρH(τ, f), can be obtained as

ρH(τ, f) =
Cov [H(t, f), H(t+ τ, f)]

Cov [H(t, f), H(t, f)]

=

∑
i∈Ωd

σ2
Fi

(f)J0(kviτ) + σ2(f)δ(τ)∑
i∈Ωd

σ2
Fi

(f) + σ2(f)
, (7)

where δ(·) is the Dirac’s delta function, which equals zero
everywhere except for zero. As seen, ρH(τ, f) is a linear
combination of the ACF of Hi(t, f), and the weight of each
term equals the energy scattered by that corresponding scat-
terer.

Consider that only one person is moving in the moni-
tored area. The speeds of all the scatterers caused by the
person are approximated to be the same, i.e., vi = v, for
∀i ∈ Ωd. The rationale behind the approximation lies that
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the torso contributes most of the strong scatterers, which
have similar speeds and dominate those from limbs with
more different speeds. Thus by this assumption, the esti-
mated speed is mainly the speed of the main body. Then,
ρH(τ, f) can be simplified as

ρH(τ, f) =

∑
i∈Ωd

σ2
Fi

(f) + σ2(f)δ(τ)∑
i∈Ωd

σ2
Fi

(f) + σ2(f)
J0(kvτ)

, α(f)J0(kvτ), (8)

where α(f) is defined as the gain of each subcarrier f . Equa-
tion (8) bridges the moving speed of the human body and
the second-order statistics, i.e., ACF, of CSI.

In practice, the sample ACF is used instead, which is an
estimate of the ACF, and we use n(τ, f) to stand for the
estimation noise of the ACF, i.e.,

ρ̂H(τ, f) = α(f)J0(kvτ) + n(τ, f). (9)

Since the term J0(kvτ) in (9) is a function of moving speed
v, it’s termed the speed signal in the following.
Maximizing speed signal. From (9), one can derive the
moving speed v from the ACF measurement ρ̂H(τ, f). In
practice, however, the signal-to-noise ratio (SNR) of the
speed signal on each subcarrier modulated by human move-
ment can be pretty low, especially when the person being
monitored is far away from the link or behind walls. As a
second-order statistic, ACF circumvents the phase issue and
is synchronized over all subcarriers, allowing direct com-
bination of ACF measured on different subcarriers. In the
following, we propose a novel scheme based on Maximal
Ratio Combining (MRC) [43] that combines the speed sig-
nals measured on multiple subcarriers in an optimal way
such that the SNR of the speed signal is maximized. MRC
is a classical diversity combining method in telecommuni-
cations that optimizes SNR by combining signals received
on multiple antennas [43]. MRC is applicable here by treat-
ing subcarriers as the receiving diversity, which has been
utilized to facilitate breathing estimation from WiFi [62].

When α(f) is small, i.e., H(t, f) is dominated by the
white noise, each tap of the ACF follows a zero-mean nor-
mal distribution with equal variance 1/N [42], i.e., n(τ, f) ∼
N (0, 1/N), where N is the number of samples used in the
ACF estimation. Therefore, the variance of n(τ, f) in (9) is
the same for different subcarriers. Because the noise terms
of different subcarriers are statistically independent, it can
be shown that the MRC scheme achieves the maximum of
the SNR of the speed signal J0(kvτ) [43], i.e.,

S(τ) =
∑
f∈F

w?(f)ρ̂H(τ, f)

=

∑
f∈F

w?(f)α(f)

J0(kvτ)+
∑
f∈F

w?(f)n(τ, f), (10)

where S(τ) is called the combined speed signal, w?(f) de-
notes the optimal combining weight for subcarrier f , and
w?(f) is linearly proportional to the gain α(f).

The gain α(f) on each subcarrier, however, is not di-
rectly available from CSI. Fortunately, since J0(kvτ) is con-
tinuous at time lag 0, i.e., limτ→0 J0(kvτ) = 1, we have
α(f) = limτ→0 ρH(τ, f) according to (8). Therefore, when
the channel sampling rate Fs is sufficiently high, α(f) can
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Fig. 3: Speed estimation with MRC

be estimated as the quantity ρ̂H(τ = 1/Fs, f), the first tap
of the ACF, and w?(f) is taken as

ŵ?(f) = ρ̂H(τ = 1/Fs, f), (11)

where the sample ACF ρ̂H(τ, f) is directly calculated from
the CSI measurements.

The intuition that MRC maximizes the SNR is that, when
combining all subcarriers appropriately, the “good” subcar-
riers will boost the signal while the “bad” subcarriers will
help attenuate the noise since their noise terms are inde-
pendent. The MRC is a key improvement over our previous
work [61] and largely boosts the sensing coverage.
Calculating speed. Fig. 2a shows an example of the com-
bined speed signal, and Fig. 2c shows the matrix of the com-
bined speed signal, where each column of the matrix corre-
sponds to a combined speed signal. As we can see from the
Fig. 2a, the shape of the combined speed signal resembles
the Bessel function J0(x) with x = kvτ , and the speed v can
be thus extracted by matching their key characteristics, e.g.,
the locations of the first peak or valley. We use the first peak
in GAITWAY, i.e., the speed is calculated as

v̂ =
x0

kτ̂
=
x0λ

2πτ̂
, (12)

where x0 is a constant value corresponding to the first peak
of Bessel function J0(x), and τ̂ is the time lag corresponding
to the first peak in the combined speed signal, as marked by
the blue dots in Fig. 2c.

In practice, two steps are further taken to enhance speed
estimation. First, to facilitate peak finding, the difference of
the combined speed signal is used, as shown in Fig. 2b,
which is more evident than Fig. 2d. In this case, x0 becomes
the location corresponding to the first peak of the derivative
of J0(x). Second, we use the phase difference between two
receive antennas to eliminate errors in the raw phase [40].
Note that, thanks to ACF, our approach is insensitive to the
initial phase offsets [54]. Fig. 3 shows the speed estimates of
a 10s period during a user’s continuous walking. Fig. 3 also
shows that MRC largely enhances the speed estimation.
Comparing with DFS. We implement the DFS-based
method [49], [39] and compare it with the proposed ap-
proach by real measurements. To compare in both LOS and
NLOS cases, we set up two links with one Tx and two Rx
in a line, one with LOS condition (10 m away) and the other
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behind a wall (12 m away), as shown in Fig. 4a. A user is
asked to walk around, and the two receivers measure the
CSI simultaneously. Fig. 4b depicts the speed estimated by
GAITWAY and DFS-based method, with the estimates by
a camera as a comparison. As seen, GAITWAY accurately
captures the speed using either the LOS or NLOS link, pre-
serving not only the average speed but also the precise in-
step speed changes. The speed estimates on both links are
highly consistent with each other. The DFS-based method,
however, fails to capture the actual speeds in both LOS and
NLOS scenarios.

As well-recognized in the literature, DFS-based ap-
proaches only estimate partial speed components along a
particular direction towards the link and can do so only
under good LOS conditions [49], [39]. Its performance de-
grades significantly under many realistic settings when the
Tx and Rx are distant away, like in Fig. 4a. This also explains
why the performance of the DFS-based method in our com-
parison is far from satisfactory and much worse than those
reported in previous works [49], [39], which are obtained
only under highly restricted scenarios.

4 GAIT EXTRACTION AND RECOGNITION

In this section, we present how to monitor and recognize
gait from the estimated walking speeds. We first identify a
segment of stable walking and extract distinct features from
there for monitoring and recognition.

4.1 Identifying Stable Walking
Previous works usually only allow a user to walk at an ap-
proximately constant speed and assume all data are col-
lected during stable walking [59], [49], [68]. Differently,
GAITWAY aims at acquiring gait information for free nat-
ural walking. A user, however, may perform various activ-
ities, including walking, sitting, standing, and typing, etc.
A user will walk at different speeds, especially when one
is starting to walk from standing still, making a turn, or

0 4 8 12 16 20 24 28
Time (s)

0.5

1

1.5

Sp
ee

d 
(m

/s
)

Walking

Turn Turn

Walking Walking
Realtime speed
Averaged speed
Stable walking

Fig. 7: Extracting stable walking period. The speed is mea-
sured when a user is walking along a 10-meter corridor for
3 times.

about to stop, etc. During these periods, the walking speed
does not necessarily reflect the most distinctive and stable
gait characteristics. Hence, the first step for gait analysis and
recognition is to identify a period of stable walking, during
which a subject walks normally with a habitual pace.

We devise an algorithm that automatically detects a sta-
ble period during a user’s normal activities. Our critical in-
sight is that, when a user is walking smoothly, the observed
speed will reach a certain range with repetitive patterns due
to the periodic step rhythms.

We use the ACF of the speed to measure such walk-
ing periodicity. As shown in Fig. 5, when a user is walking
stably, evident peaks will be observed from the ACF of the
speed. In contrast, the ACF will be more flatted out for vary-
ing walking. We apply a sliding window (3 seconds) to the
speed estimates and calculate the ACF for each window. We
then employ peak detection on the ACF of the speed and
examine the first peak. A period will be considered as sta-
ble walking only if a continuous series of reliable peaks are
observed.

To be more robust, we further check the averaged center
trend of the walking speed, which is obtained by smooth-
ing the speed estimates with a relatively large window of
2 seconds. A walking period will be used for gait analysis
only when the average speed is larger than a certain value
(e.g., 0.7 m/s, which is smaller than normal human walking
speed ranging from 1.0 m/s to 2.0 m/s). Fig. 7 illustrates an
example of the identified stable walking periods. Each sta-
ble period then becomes a gait instance with a speed series
V = [v(ti), i = 1, 2, · · · ,M ].

4.2 Estimating Gait Cycles

A gait cycle is defined as the duration between two con-
secutive events that the same heel hits the ground during
walking. In GAITWAY, we estimate not only the gait cycle
time but also segment the speed series for every individual
step.

During normal human walking, a subject’s speed will
experience an increase followed by a decrease, resulting in
a speed peak for each step. Therefore, we perform a sim-
ple peak detection on the speed series to identify steps, as
shown in Fig. 6. To combat noises and outliers, we have
applied certain constraints (including peak prominence and
height) for peak detection. When all steps are identified, we
trim the walking period by removing the duration before
the first peak and after the last peak. The remained trace be-
comes a valid gait instance for further analysis in GAITWAY.
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4.3 Extracting Gait Features

Most of the previous works extract data-driven features di-
rectly from CSI measurements, which are implausible and
contain environment-dependent features. As a consequence,
all previous WiFi-based methods only work in restricted set-
tings [49], [64], [59], [29], [27], [68]. Differently, GAITWAY
performs human identification by extracting true gait fea-
tures, which are physically plausible and environmentally ir-
relevant, from the speed estimates. Following this notion,
we devise a number of interpretable features to comprehen-
sively characterize one’s gait pattern from various aspects
such as symmetry, smoothness, variability, and stability, etc.,
in addition to the straightforward physiological properties
like speed, stride length, and gait cycle time.
Speed deviation. The average walking speed is first taken as
the mean value of instantaneous estimates of a user’s walk-
ing speed. As shown in Fig. 9, our measurements demon-
strate that not only do different users have different habit-
ual speeds but also a user’s walking speed varies over time.
As a result, we only employ the average walking speed as a
metric for gait speed assessment for a specific individual but
do not use it as a classification feature. Instead, we exploit
features that are more independent from the mean walking
speed for recognition. As shown in Fig. 8a, we first detrend
the absolute speed by subtracting the average center speed.
Then we calculate the different percentile values (we take
95%tile, 75%tile, and 50%tile in GAITWAY) of the speed de-
viations. Specifically, we take these percentile values of the
positive deviations, negative deviations, and the absolutes
of all deviations, respectively.
Gait cycle time. The gait cycle time is computed as the mean
duration of every two consecutive steps. The middle row of
Fig. 9 shows the average cycle time of two users’ walking
instances measured at different locations and time. Over 20
traces, variances of 0.7 ms and 0.6 ms are observed for the
two users, respectively.
Stride length. Stride estimation has been a long-standing
challenging problem [58]. Thanks to the accurate speed es-
timation, we can intuitively derive the stride length by inte-
grating the speed estimates over the time duration of each
step. The bottom row of Fig. 9 depicts the estimated stride
lengths for two users.
Acceleration. Acceleration is computed as the derivatives
of speed. We take the maximum, minimum, and variance
of the acceleration. Since the walking acceleration also ex-
hibits sinusoid-like patterns, we also identify the peaks and
valleys of the acceleration sequence and compute the respec-
tive variances.
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Smoothness. The harmonic ratio (HR) has been widely
adopted as a quantitative measure of walking smoothness
[2], [3]. HR examines the step-to-step symmetry within a
stride by quantifying the harmonic composition of the accel-
erations for a given stride. It first conducts Discrete Fourier
Transform (DFT) on the acceleration within each stride. The
HR is then defined as the ratio of the sum of the ampli-
tudes of the even harmonics to that of the odd harmonics.
We use the first twenty harmonics to calculate the HRs, as
justified for normal cadences for which the majority of the
power occurs below 10Hz [22]. Fig. 10 illustrates the HRs
of a walking trace of 7 cycles (14 steps), demonstrating the
progression of step-to-step symmetry during the walk. For
every gait cycle during walking, we have one HR value. To
obtain a single value feature for a walking trace, we take the
median and variance of the HR values.
Rhythmicity. Recall Fig. 5, we calculate the ACF of the walk-
ing speed V . If a user walks in a regularly rhythmic manner,
the speed ACF will exhibit multiple prominent peaks and
will decay slowly. Hence the ACF embodies the walking
rhythmicity or dynamic stability. We thus develop several
features based on the ACF of the speed. In GAITWAY, we
apply a sliding window to calculate a series of ACF for each
walking instance, resulting in a speed ACF matrix. From
there, we perform peak detection on each column to find
the prominent peak and the corresponding delay. We then
extract the following single-valued features: The mean and
variance of the heights of the first peaks and the number
of identified prominent peaks; the variance of differences of
peak locations for each column; and the ratio of columns in
the matrix that does not have a prominent peak.
Symmetry. We calculate the step time and stride lengths
of left and right foot1 respectively, and take their means
and standard deviations as features. The difference of each
feature between two feet is derived as a measure of gait
symmetry, which will not be affected whether odd steps are
treated as the left foot or right foot.
RQA. To quantify the gait variability, we adopt Recurrence
Quantification Analysis (RQA) [24], a method of nonlinear
data analysis that quantifies the number and duration of
recurrences of a dynamical system presented by its phase
space trajectory using recurrent plot (RP). An RP is mathe-
matically expressed as an N*N matrix R:

Rij = Θ(ε− ||~xi − ~xj ||), ~xi ∈ Rm, i, j = 1, 2, · · · , N,

1. Odd and oven steps are used here because of the lack of knowledge
on the left and right foot. Although it might be easy to mistake the left
foot with the right foot, the exchange of left/right stride lengths does
not affect too much since most people walk relatively symmetrically.
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where N is the number of states, ε is a predefined cutoff
distance, || · || is a norm and Θ(·) the Heaviside function. In
GAITWAY, the state space trajectory X is constructed from
the speed series {vi, i = 1, 2, · · · , L} with an embedding
dimension of 5 and a delay of 10 samples. Fig. 11 depicts two
illustrative RPs for two different users, where the upper RP
presents more diagonal lines, indicating a more stable and
periodic gait.

A number of measures can be derived by RQA. We ex-
ploit the below four of them: (1) Recurrence rate: The per-
centage of recurrence points in an RP; (2) Determinism: The
percentage of recurrence points that form diagonal lines;
(3) The Shannon entropy of the probability distribution of
the diagonal line lengths; and (4) The average diagonal line
length.

Our measurements show that RQA reaches a stable
value when calculated over 4 gait cycles, suggesting the
shortest length for stable walking period detection. In prac-
tice, we relax the minimum to 3 cycles (i.e., 6 steps). Walk-
ing periods with less than 3 cycles are not considered for
gait recognition but only for monitoring.
ACF features. Finally, we also investigate the ACF of CSI
(Fig. 2) for feature extraction. Since the ACF is entwined
with walking speed yet is independent of location and en-
vironment, it can serve as a signature for gait classification.
Specifically, rather than using all ACFs within a walking
period, we consider the ACF corresponding to the speed
peaks, as identified in Fig. 6. Note that the peak speeds
could be different within a walking trace, i.e., the loca-
tions of the first peak of the ACF vary over time. Hence we
aligned all the ACFs to a scale corresponding to the mean
peak speed. To make it more apparent, we take the differ-
ence between each ACF and then average the aligned ACF
differences. Fig. 12 illustrates an example of the scaled ACF
differences. We use the first 50 taps as a feature vector in our
system.

In GAITWAY, we focus on two subgoals: gait speed mon-
itoring and recognition. To monitor and assess an individ-
ual’s gait, we investigate three straight-forward and com-
monly used properties, i.e., average walking speed, gait cy-
cle time, and stride length. We also use the harmonic ratio
[2], a well-recognized measure for stability and symmetry,
to evaluate gait progression.

To recognize a user, we fuse all the above features, result-
ing in a 90-dimensional feature vector for each gait instance.
We conduct the following two steps for potential dimension
deduction. First, we investigate whether these features are
correlated with each other or not. We calculate the pair-wise
correlations of all the features (except for the 50-dimensional
ACF features that are taken as a whole). Then we elimi-

nate one of each pair of highly correlated features for clas-
sification. Second, we employ an outcome-based approach
for feature selection. Specifically, we perform 10-fold cross-
validation with and without a specific feature and keep that
feature only if it improves the output classification rate.

4.4 Recognizing Gait

Given the features that we have extracted, we now present
how to identify a user (from others) by the gait patterns. Fol-
lowing the literature on gait recognition [8], we consider two
identification scenarios: single-user verification that validates
whether a user is the target subject or an unknown stranger,
and multiple user recognition that identifies which target sub-
ject the user is among a set of candidates. We leverage
Support Vector Machine (SVM), a widely-used classification
technique, for this purpose. In GAITWAY, we use SVM in-
stead of the popular deep learning techniques mainly be-
cause our primary goal is to demonstrate the effectiveness
of the speed estimates and the plausible physical features
for gait recognition. We keep applying deep learning to fu-
ture work.
Single user verification. For single-user verification, we
train a gait model for the subject by building a binary clas-
sifier, which sees the subject’s gait instances as a positive
class and several benchmark users’ as a negative class. The
benchmark data could be obtained from available standard
public database. In GAITWAY, they are randomly selected
from our experiment participants. To authenticate the target
person, we calculate the probability that an instance fits the
target class. A testing gait instance is considered belonging
to the target subject when the probability is higher than a
threshold and is otherwise rejected. In practice, the thresh-
old can be defined as different sensitive level by the users to
adapt to different authentication applications.
Multiple user recognition. To recognize multiple users, we
train a one-vs-all binary classifier for each user, with the
gait instances from this user as the positive class and the
instances from all other candidates as the negative class.
Then given a gait instance for testing, we feed it into every
classifier and obtain the fitness probability that the instance
belongs to each class. The gait instance is assigned to the
user from whose classifier the highest fitness probability is
observed.

We use LibSVM tool [6] with the Radial Basis Function
(RBF) kernel. The optimal values for parameters γ and c are
selected by grid search with 10-fold cross-validation. Fea-
tures are scaled to [0,1] for classification.

We note that in this section and throughout the paper,
the data are automatically collected and extracted when the
subject is walking around freely and naturally2, without be-
ing asked to walk along a predefined path or a predefined
direction, nor to walk with deliberate speed. The Tx and Rx
could be placed at arbitrary locations as long as they pro-
vide excellent coverage. More importantly, there is no need
to re-train the system even if the positions of Tx and/or Rx

2. We assume a user is walking naturally for recognition, which is
a general assumption for gait recognition systems based on walking
speed. If a user is walking strangely on purpose, carrying a heavy box,
or moving a cart, GAITWAY can still estimate the walking speeds, but it
does not make sense to perform recognition upon the distorted speeds.
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change since the speed estimation is location independent,
and all the features are extracted from the speed estimates.
These are critical properties that underpin a ubiquitous gait
monitoring and recognition system. It significantly differs
from previous works that exert many of these constraints
to testers in order to obtain environmentally repeatable fea-
tures for human recognition [64], [59], [63] or to derive DFS
[49].

5 EVALUATION

5.1 Methodology
Experimental settings. We implement GAITWAY on com-
modity WiFi devices and conduct experiments in a typical
building with an area of about 5, 000 ft2. The floorplan of
the experimental area is shown in Fig. 13. We consider dif-
ferent settings by placing the WiFi Tx and Rx at different
locations (as roughly marked in Fig. 13) during multiple
sessions of data collection. For each data session, there is
only one single pair of Tx and Rx. Specifically, we have 6
different settings, where the Tx and Rx are put on a stand
with a height of about 1 m. The Tx and Rx are separated by
8 to 11 meters for all settings, blocked by one or multiple
walls. The Tx and Rx are both commercial laptops equipped
with off-the-shelf WiFi network interface card (Intel 5300)
and unmodified omni-directional chip antennas. We use the
Linux 802.11n CSI Tool [16] to collect CSI measurements.
We use 5.8 GHz channels (by default channel 161) with a
bandwidth of 40 MHz. There are a number of WiFi devices
co-existing on the same channel.
Data collection. We collected gait instances from 11 hu-
man subjects, of which 5 are female, and 6 are male. During
data collection, the users were walking around continuously
and freely in their natural way. The user was free to walk
through any area. Some of them read news, play mobile
games, or talk on the phone while walking. During data
collection, other people are working around but not walk-
ing. The experiments were conducted on 4 different days
across six months. For each day, we collected data for two
sessions at different times. We obtained 8 sessions of data in
total, each under a different setting, as in Fig. 13. Users wore
different clothes (from summer to autumn) during different
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Fig. 14: Performance of speed estimation

sessions of data collection. For each session, we measured
for about 10∼20 minutes of walking for each subject. The
data were anonymized for privacy concerns.

In total, we collect about 1030 minutes of walking data
from the 11 participants, from which we extract around 970
minutes of walking (i.e., there are about 60 minutes during
which a subject is out of effective coverage of the link, and
the speed is not captured). From these data, we extract 5,283
gait instances of effective, stable walking, which occupies
about 680 minutes, approximately 67% of the total walk-
ing duration. The effective percentage is limited in our data
collection because users are walking freely as will with fre-
quently stop-and-go and turning behaviors that could not
serve as reliable gait measurements. In practice, the training
data collection would be more efficient if the users are coop-
erative in gait measurements. Compare with many previous
works that require the users to walk on a fixed pathway re-
peatedly, GAITWAY greatly eases the task and boosts gait
collection to a large scale.
Metrics. We separately study the performance of three cases:
single-user verification, dual user distinction, a special case
of multiple user recognition, and general multiple user
recognition. Following the literature of gait recognition [8],
we use the Receiver’s Operating Curve (ROC) for the False
Acceptance Rate (FAR) and False Rejection Rate (FRR), and
the Equal Error Rate (EER), the point on the ROC where
the FAR equals the FRR, to evaluate verification, and Recog-
nition Rate (RR) for recognition evaluation. All the results
below are obtained on a 10-fold validation basis.

5.2 Speed Estimation Performance

We first evaluate the performance of GAITWAY in monitor-
ing gait speed, for which the accuracy of speed estimation is
the key. Considering both LOS and NLOS conditions, we set
up two links, one Tx with two Rx. One Rx is 10 m away from
the Tx, while the other is 12 m away behind a wall. Speed is
estimated by each link individually. The user walks around
naturally in the field of view of the camera. We evaluate
with two users (one male and one female) for these experi-
ments. We set up a camera to estimate the true speeds. We
also implement the DFS-based speed estimation in [49].

As shown in Fig. 14a, GAITWAY achieves remarkable ac-
curacy, with a median error of 0.12 m/s and a 90%tile er-
ror of 0.35 m/s. The accuracy is ensured in both LOS and
NLOS scenarios, with a marginal difference of 0.04 m/s in
median error. The better performance in NLOS scenarios
is attributed to the proposed statistical model, which holds
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better under NLOS with more uniformly distributed mul-
tipaths than LOS. We believe such accuracy provides clini-
cally meaningful gait speed that was previously difficult to
measure. As a comparison, the DFS-based approach fails to
capture speeds due to limitations discussed in §3.1. As seen
in Fig. 14a, DFS-based method produces a 0.9 m/s median
and 1.24 m/s 90%tile error, about 64% and 89% in relative
errors considering the true average speed is about 1.4 m/s.

We also study the coverage that GAITWAY can reliably
track a user’s moving speed. To do so, we first analyze the
speed estimation accuracy with respect to the distance trav-
eled using the above data. As illustrated in Fig. 14b, the
median errors are consistently below 0.2m/s for all ranges
except for the beginning period. Large errors during the first
meter arise from the unstable walking behavior that causes
distortions in camera-based speed tracking. We perform fur-
ther experiments to study the coverage that GAITWAY can
detect the speed. Rather than asking a user to walk freely, we
now let the user walk along two specific paths (P1 and P2),
both about 12 m long, and collect data under Setting #2, as
shown in Fig. 13. We test with multiple users, each repeating
for 10 times, and the results show a consistent coverage. We
illustrate two examples and plot the speed estimates with
respect to the distance a user has traveled from the starting
location in Fig. 14b. As seen, GAITWAY estimates the walk-
ing speed very well throughout the entire path of P1, which
is under good coverage of the link in Setting #2. As a com-
parison, GAITWAY tracks the speed until the point the user
has walked for about 8.5 m (as marked by the red cross in
Fig. 13), where the user is already about 9 m from the Rx
and 11 m from the Tx, respectively. For further locations,
the scattering signals through multiple walls are too weak
for GAITWAY to perform reliable estimation. The coverage
is as expected accordingly to the theoretical coverage shape
of the Cassini ovals for passive human sensing [38]. Yet as
long as GAITWAY can detect the walking, it outputs accu-
rate speed estimates and thereby underpins recognition.

Based on the delightful instantaneous speeds, GAITWAY
can monitor various parameters like steps and stride
lengths. In particular, over 10 segments of walking,
GAITWAY correctly counts the steps with less than 1 step
errors for 9 of them and a 2-step error for the other one.
Most of the errors occur at the beginning or end of a walk.
For the identified steps, GAITWAY estimates stride lengths
accuracy (thanks to the accurate speed estimates), with a re-
spective 2.36 cm and 4.03 cm mean errors for the female and
male user compared to camera-based results. We cannot ob-
tain steps and strides from the DFS-based method due to
the low-quality speed estimates. For the same reason, we do
not further compare with it for gait recognition [49].

5.3 Recognition Performance

Single user verification. To evaluate the performance of
GAITWAY for verification, we test each subject in our dataset
by using the gait instances of all other users as a nega-
tive class. We shuffle the training and testing data for 10
folds and depict the integrated results. As shown in Fig. 15,
GAITWAY achieves an EER of 12.58% when using 70% of
gait instances for training. The EER will increase by about
1% and 3% when shrinking the training size to 50% and 30%,
respectively. We study the performance with respect to tem-
poral changes in Fig. 16. As seen, the performance slightly
degrades when more sessions over time are involved. The
best EER of 9.57% is achieved when using the first 4 ses-
sions. The performance using 2 sessions is worse than using
more sessions because there is not sufficient data for train-
ing when using the first 2 sessions. Fig. 17 shows the FAR
and FRR for each user with all sessions of data.
Two user distinction. Before evaluating multiple user recog-
nition, it is interesting to study a special scenario of two
users since it is common in practice that two persons share
an office room or two residents live in one apartment. It
would be particularly useful if we can distinguish one from
another. Thus we conduct binary classification for every pair
of subjects in our dataset. To better understand the results,
we consider precision and recall by treating one user as the
positive class and the other as the negative class for each
group. As shown in Fig. 18, GAITWAY yields remarkable
performance, with an average precision and recall of 94.84%
and 95.21% respectively for 55 pairs of users when using
70% of data for training. And the accuracy of >90% can be
achieved with only 20% of data for training. With our auto-
matic data collection and gait extraction, such an amount of
data can be easily gathered by a walk of about 20 minutes,
making GAITWAY friendly for user enrollment.
Multiple user recognition. The recognition for multiple
users is much more complicated than verification or pair
distinction. As shown in Fig. 19, the RR, when using 70%
of data over all sessions for training and the others for test-
ing, is 69.84% for 11 users, which decreases to 66.63% with
half of the data for training. The performance is compara-
ble to the start-of-the-art works based on wearable sensors
[67], [65], which report a respective RR of 66.3% and 73.4%
on two sessions of data with accelerometers.

Gait variations: Fig. 20 illustrates how the RR changes
with gait variations when involving different sessions. As
seen, the performance degrades from 81.59% when using
the 3 sessions from the first two days to 69.84% when us-
ing all 8 sessions of data. This is because a user’s gait speed
may vary considerably over time. For example, one user
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Fig. 20: RR vs. # of data ses-
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Fig. 21: RR vs. length of
gait instances
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Fig. 22: RR vs. data session

in our experiments had a walking speed of about 0.8 m/s
in one session while about 1.4 m/s in another session. Al-
though GAITWAY circumvents the use of absolute speed, the
performance may still be influenced by dramatic changes in
walking speed since our system is built upon walking speed
alone. Unless otherwise specified, we use all 8 sessions of
data in the following evaluation.

Gait instance length: As our data are collected and ex-
tracted automatically, the duration and step amounts of each
gait instance would be different. We thus analyze whether
the lengths of walking samples will affect recognition accu-
racy. We analyze the length distribution of all testing gait
instances, as shown in the right part of Fig. 21, and de-
pict the corresponding RRs in the left part. As seen, we are
able to identify a user who just walks six steps. The RR
tops the best of 70.52% for gait instances of 12 steps and
decreases for either longer or shorter instances. A subject’s
gait may vary for a long walking, which should thus be par-
titioned into appropriate instances. For example, the trace
can be automatically segmented into instances of around 12
steps, which will produce better accuracy. Thus GAITWAY
will do the instance segmentation automatically, and there
is no need for a user to pay attention to the trace length.

Data sessions: We study the impact of different ses-
sions/settings in Fig. 22. While most of the data sessions
produce similar performance, session #3 sees the worst per-
formance of only 42.19%. This is because the Rx is too close
to a reinforced concrete pillar of about 1m × 1m, and thus
the weak scattering signals from the human body can hardly
be received. Under such conditions, even with MRC, it can-
not recover the speed signals well. However, WiFi devices
are usually placed to achieve good coverage, and such a
rigorous situation would be avoided. GAITWAY only needs
one single pair of WiFi radios. In practice, however, if mul-
tiple pairs are used to monitor a large area, it is suggested
to deploy relatively densely and then, for locations covered
by multiple pairs, the information could be aggregated to
improve accuracy.

Number of subjects: To study the impacts of subject num-
ber registered in the database, we traverse all 2036 possible
groupings of the 11 subjects, with group sizes increasing
from 2 to 11, and integrate the results in Fig. 23. In general,
the RR gradually decreases with more users being involved.
However, we note that GAITWAY retains a remarkable RR
of over 80% when there are 5 subjects, demonstrating the
promising potential for the smart home where there are usu-
ally a few residents in a house.

Subjects diversity: Fig. 24 shows the confusion matrix of
11 subjects with data sessions across four days. Most of the
subjects experience RRs higher than 65%, except for subject

E and subject I, who are very similar to each other. Compar-
ing Fig. 24 and Fig. 17, subjects with lower RRs also suffer
from relatively larger FAR and FRR among others, indicat-
ing that their gait patterns are less distinctive.
Comparative Study. Our performance is similar to previous
works based on wearable sensors [67], [65], [8], which report
EERs from 5% to 20%, mostly based on only one or two ses-
sions of data. GAITWAY outperforms or is comparable to the
state-of-the-art CSI-based methods, including WiWho [59]
that reports 92% to 80% RR for 2 to 6 users respectively and
WifiU [49] that achieves an EER of 8.6%. Applying sophisti-
cated machine learning techniques, CrossSense [63] consid-
ers three sites and reports an accuracy of over 80%, while
reports <20% for WiWho and WifiU. The data, however, is
collected in a single session on each site. Again, all of them
are confined to a fixed straight path in a predefined direction
within a narrow LOS area. In contrast, GAITWAY is evalu-
ated in through-the-wall scenes with distant Tx and Rx in
which none of these systems can work.

Although GAITWAY tops the performance regarding ac-
curacy and practicability among WiFi-based approaches, the
recognition accuracy is not super high. An important reason
is that GAITWAY uses gait speed alone, which is less distinct
and reliable than many other biometric traits such as body
shape and foot size and shape, etc. Thus we mainly envision
GAITWAY as a ubiquitous solution for daily applications but
not for critical human identification.

5.4 Latency

We evaluate the Matlab code of GAITWAY on a laptop
equipped with an Intel Core i7. GAITWAY can run in re-
altime on personal computers. For 1 minute of data, it takes
about 27 seconds (20s for speed estimation, 6s for stable pe-
riod identification, and < 1s for feature extraction) to pro-
cess. SVM takes 164s and 2s for training and testing with
1,000 instances, respectively. As training can be done offline,
this cost is negligible. In addition, note that there is also data
collection latency from the entire system perspective since a
user needs to keep walking for a minimum of 6 steps (recall
Fig. 21) for recognition.

5.5 Limitations and Future Work

While GAITWAY significantly advances the state-of-the-art
in WiFi-based gait recognition, it has several limitations.
First, GAITWAY can only estimate the speed of a single walk-
ing user with or without other users around but not walk-
ing). In the case of multiple people walking, it will produce
a synthesized speed but cannot separate them due to the
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sion matrix

fundamental limits of antenna number and frequency band-
width on 2.4GHz/5GHz WiFi. Thus the present solution
is not suitable for recognizing multiple concurrent walking
users. Second, the current implementation uses a high sam-
pling rate of 1500Hz. Third, while we have demonstrated
the remarkable performance of GAITWAY, our recognition
experiments are currently limited to 11 users due to bud-
get constraints. Our future work extends to a larger group
of users and explores lower sampling rates as well as multi-
person scenarios. Future work also includes building neural
network models for gait recognition by using the distinct
speed estimates.

6 RELATED WORKS

To monitor gait as a vital indicator, clinicians mainly mea-
sure gait speed. Yet gait recognition would demand more
extensive information related to an individual’s walking
style and her biometric traits (e.g., body mass and shape,
foot size and shape, etc.). Traditionally, gait speed is mea-
sured manually by a physician by asking the subject to
walk for a certain distance and measuring the correspond-
ing walking time. Commercial systems like VICON (based
on a set of infrared cameras) or GAITRite (based on pressure
mats) are nowadays used in some medical settings. The lit-
erature on automating the acquisition of gait information
more inexpensively has dramatically grown recently.
Vision. Vision-based approaches rely on multi-view im-
ages of gait captured by an array of cameras to produce
high recognition rates [66]. A standard and effective method
of representing vision-based gait is the average silhouettes
formed by a sequence of images [17]. Depth cameras such
as Kinect has also been explored for in-home gait monitor-
ing recently [44]. In addition to the complex and cumber-
some infrastructure, vision-based approaches are vulnera-
ble to various factors, including viewing angles, surround-
ing conditions, and the subject’s apparel and accessories.
They are also undesirable for in-home use due to privacy
concerns.
Pressure. Underfoot pressure is also widely investigated,
which is measured by floor sensors such as a force plate
[32] or a pressure mat [34], [7]. Pressure mats capture spa-
tial and temporal gait features dictated by foot size and geo-
metric shape, orientation, and inter-footstep properties (e.g.,
toe-out angle), etc. Pressure sensors, however, require direct
contact with foot and may degrade for shod walking since
various footwear would redistribute the force of the foot dif-
ferently. Acoustic sensors [15] and vibration sensors [37] are
also used to capture footstep-induced sound and floor vibra-
tion for recognition, respectively. Similar to underfoot pres-

sure, they are also susceptible to footwear, walking speed,
and ambient noises. Moreover, all of the above systems, us-
ing cameras or floor sensors, require complicated installa-
tion of dedicated devices, limiting their use in restricted
areas. Yet in spite of this, these works have objectively af-
firmed the feasibility of gait recognition even for a large set
of subjects.
Acceleration. To achieve continuous gait monitoring and
recognition, inertial sensors, especially those built in smart-
phones and wearables, are explored to record accelerations
during gait [67], [65]. Reasonable recognition rates could be
achieved when placing multiple sensors on different body
locations [65]. Inertial sensing, however, is well-know to be
noisy and vulnerable and is incapable of measuring walk-
ing speed. Wearable sensors are also unfavorable, especially
to elderly people.
Radio. Different from the above works, GAITWAY monitors
a subject’s gait speed and further recognizes her from the
ambient radio signals reflected off her body, passively and
unobtrusively. Existing works measure walking speed ei-
ther by using specialized low-power radar signals [20], [46],
or by extracting Doppler frequency shifts from WiFi sig-
nals [49], [39], [40], [25]. These works, however, require the
user to walk on a predefined path in a predefined direc-
tion, with WiFi transceivers placed at fixed locations, and
only work in restricted scenarios with clear LOS conditions.
Moreover, as Doppler shifts only relate to partial speed com-
ponent projected in a specific direction, the measured speed
may be incorrect if the user deviates from the designated
path. Other works directly extract certain signal features
and match against prior trained database to classify human
[64], [68], [26], [27], [29], [59], [56], [57], [63] or activities [51],
[21], [60], [55], [11], [10], [13], [53], [48], [28]. Neither can
they measure gait speed, nor do they sense physically inter-
pretable characteristics related to gait. In addition, none of
these systems work through the walls as GAITWAY does.

7 CONCLUSION

GAITWAY is the first system that can monitor and recog-
nize gait through the walls using commodity WiFi signals.
It continuously measures speed passively and unobtrusively
and extracts physically plausible features of the speed for
gait recognition. We validate the real-world performance
and demonstrate that it operates well when a user is 10m
away from the link behind the walls. The proposed scatter-
ing model underpinning such through-the-wall capability
offers new exciting directions and opportunities for wire-
less sensing.
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