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Abstract—We present the model, design, and implementation of SMARS, the first practical Sleep Monitoring system that exploits
Ambient Radio Signals to recognize sleep stages and assess sleep quality. This will enable a future smart home that monitors daily
sleep in a ubiquitous, non-invasive and contactless manner, without instrumenting the subject’s body or the bed. The key enabler
underlying SMARS is a statistical model that accounts for all reflecting and scattering multipaths, allowing highly accurate and
instantaneous breathing estimation with best-ever performance achieved on commodity devices. On this basis, SMARS then
recognizes different sleep stages, including wake, rapid eye movement (REM), and non-REM (NREM), which was previously only
possible with dedicated hardware. We implement a real-time system on commercial WiFi chipsets and deploy it in 6 homes, resulting in
32 nights of data in total. Our results demonstrate that SMARS yields a median absolute error of 0.47 breaths per minute (BPM) and a
95%-tile error of only 2.92 BPM for breathing estimation, and detects breathing robustly even when a person is 10 meters away from
the link, or behind a wall. SMARS achieves a sleep staging accuracy of 88%, outperforming the prevalent unobtrusive commodity
solutions using bed sensor or UWB radar. The performance is also validated upon a public sleep dataset of 20 patients. By achieving
promising results with merely a single commodity RF link, we believe that SMARS will set the stage for a practical in-home sleep
monitoring solution.

Index Terms—Breathing estimation, maximal ratio combining, radio signals, signal processing, sleep monitoring, vital signs
monitoring, WiFi sensing.
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1 INTRODUCTION

Sleep plays a vital role in an individual’s health and well-
being, both mentally and physically. It is well recognized
that sleep quantity and quality is fundamentally related
to health risks like cardiovascular disease, stroke, kidney
failure, and diabetes, etc. Unfortunately, in a modern society,
a number of people suffer from sleep disorders. As recently
reported, 10% of the population suffers from chronic insom-
nia (which is even higher among elders) [1], and 1/3 of
Americans do not get sufficient sleep [2]. Sleep monitoring
emerges as an effective mechanism to manage the morbidity
and mortality associated with sleep related disorders, in
addition to providing insight on people’s general wellbeing.

Over the past few decades, various sleep monitoring
solutions have been proposed. Typically they measure sleep
time, recognize different sleep stages, i.e., wake, REM (Rapid
Eye Movement) and NREM (Non-REM), and assess an
individual’s sleep quality. The medical gold standard is
Polysomnography (PSG) using a number of contact sen-
sors, which is usually expensive and cumbersome, limiting
PSG to clinical usage for confirmed patients. Other ap-
proaches including photoplethysmography (PPG) and actig-
raphy (ACT) require users to wear dedicated sensors (e.g.,
LED sensor and actimetry sensor) to measure vital signs

(e.g., respiratory rate and heart rate) and movements during
sleep [3]. Ballistocardiogram (BCG) needs to instrument
the mattress with an array of EMFi sensors to measure
ballistic force. These approaches provide suitable solutions
for those who need special care but are less-than-ideal for
the public due to their cost and complexity. Recent efforts
in mobile computing tackle in-home sleep monitoring using
smartphones and wearables. These methods, however, only
provide coarse-grained, less accurate measurements and fail
to monitor vital signs like respiratory rate. In addition,
mobiles and wearables are undesirable for elders and those
with dementia.

Different from prevailing solutions, in this paper, we
envision a future smart home that monitors daily sleep in a
ubiquitous, non-invasive, contactless, and accurate manner,
without instrumenting the body or the bed. We observe an
opportunity towards such a system from two perspectives:
1) Clinical studies have shown that physiological activ-
ity varies between different sleep stages [4]. For example,
breathing rate becomes irregular and rapid during REM
sleep since brain oxygen consumption increases. During
NREM sleep, breathing rate is slower and more stable,
rendering the feasibility of sleep staging based on breath-
ing monitoring. 2) Recent advances in wireless technology
have demonstrated non-contact sensing of body motions in
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Fig. 1: An example of SMARS monitoring results

indoor environment [5], [6], [7], [8]. Chest and abdomen
motions caused by breathing can alter radio signal propaga-
tions and thus modulate the received signals, from which it
is then possible to decipher breathing. We explore a synergy
between the two perspectives, resulting in a system that
leverages ambient radio signals (e.g., WiFi) to capture a
person’s breathing and motion during sleep and further
monitor his/her sleep behaviors.

While early works have investigated the feasibility of
RF-based breathing estimation and sleep monitoring, they
either rely on specialized hardware like FMCW radar [6],
[9], [10], or only work in controlled environments [5], [11],
[12], [13]. Solutions based on dedicated radios are usually
expensive and not ubiquitously applicable. Solutions using
commodity devices typically require the user to lie still on
a bed with radios exceedingly close to his/her chest. These
solutions also fail in presence of extraneous motions or in
Non-Line-Of-Sight (NLOS) scenarios. In addition, none of
them can identify different sleep stages due to their limited
accuracy in breathing estimation. Such limitations prevent
them from becoming practical in-home sleep monitoring
application.

In this paper, we present the model, design, and imple-
mentation of SMARS, the first practical Sleep Monitoring
system that exploits commodity Ambient Radio Signals to
recognize sleep stages and assess sleep quality. SMARS
works in a non-obtrusive manner without any body contact.
All that a user needs to do is to set up one single link
between two commodity radios by, e.g., simply placing a
receiver in case a wireless router is already installed inside
the home. SMARS advances the literature with a novel
statistical model that allows highly accurate and instanta-
neous breathing estimation. On this basis, SMARS is able
to distinguish different sleep stages (Fig. 1) via the tiny
changes of the patterns of breathing rate over a period of
time.

Specifically, SMARS excels in three unique aspects to
deliver practical sleep monitoring. First of all, we devise
a statistical model on motion in Channel State Information
(CSI) that leverages all reflection and scattering multipaths
indoors. Existing works usually assume a geometrical model
with a few multipaths and one major path reflected off
the human body (e.g., using a 2-ray model developed for
outdoor space) [7], [14], [15], [16]. Under real-world in-
door environments, however, there could be as many as
hundreds of multipaths [17], and signals not only reflect
but also scatter off a person’s body and other objects in

the space. As a consequence, previous approaches fail in
NLOS environments and cannot detect tiny, precise motions
due to the lack of a dominant reflection path. In contrast,
our model investigates the statistical characteristics of CSI
without making such unrealistic assumptions, underlaying
robust detection of arbitrary motions including breathing.

Second, SMARS achieves instantaneous, accurate and
robust respiratory rate estimation. Most breathing estima-
tion schemes [5], [11], [12], [14] assume constant breathing
rate during a relatively large time window to gain suf-
ficient frequency resolution. As a consequence, they lose
fine-grained breathing variations during sleep. In addi-
tion, precise breathing motions can easily be buried in
CSI measurement noises, rendering existing philosophies
effective only in extraordinarily close proximity (typically
within 2∼3 meters) without any extraneous motions. To
improve time resolution, SMARS exploits the time-domain
Auto-Correlation Function (ACF) to estimate breathing rate,
which can report real-time breathing rates as frequent as
every one second and make it possible to capture instan-
taneous breathing rate changes. By using ACF, SMARS
also circumvents the use of noisy phase and the usually
handcrafted CSI denoising procedure. More importantly, by
eliminating the frequency offsets and thus synchronizing the
CSI responses to breathing over different subcarriers, ACF
allows us to perform Maximal Ratio Combining (MRC) to
combine multiple subcarriers to maximize breathing signals
in the optimal way. By doing so, we push the limit of the
breathing signal to noise ratio (SNR) and thus significantly
increase the sensing sensitivity for larger coverage as well
as weaker breathing. Specifically, SMARS can reliably detect
breathing when a person is 10 meters away from the link,
or behind a wall, which is even better than specialized low-
power radars [6], [9], [18].

Finally, based on the extracted breathing rates and mo-
tion statistics during sleep, we recognize different sleep
stages (including wake, REM and NREM) and assess the
overall sleep quantity and quality. Based on an in-depth un-
derstanding of the relationship between breathing rates and
sleep stages, we extract distinctive breathing features for
classification for sleep staging. To the best of our knowledge,
none of existing works using commodity radios, e.g., off-the-
shelf WiFi, can achieve the same goal of staging sleep.

We have implemented a real-time system on commercial
WiFi chipsets and evaluated its performance through exten-
sive experiments. We deployed SMARS in 6 homes with 6
healthy subjects and collected 32 nights of data, and 5 out
of 32 nights have PSG data. Our results demonstrate that
SMARS yields a median absolute error of 0.47 BPM and a
95%-tile error of only 2.92 BPM for breathing estimation, and
detects breathing robustly even when a person is 10 meters
away from the link, or behind a wall. SMARS achieves
sleep staging accuracy of 88%, outperforming the preva-
lent unobtrusive commodity solutions using bed sensor or
UWB radar. The performance of breathing estimation is
also validated upon a public sleep dataset of 20 patients.
With these promising results, we believe SMARS can deliver
meaningful sleep insights for clinical and regular use, taking
an important step towards the actualization of a health
monitoring smart home.

In a nutshell, our core contribution is SMARS, the first
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system that enables a smart home to stage an inhabi-
tant’s sleep using commodity off-the-shelf WiFi devices,
by achieving highly accurate and instantaneous breathing
estimation in the wild. SMARS also contributes the first
statistical model for understanding and capturing motions
in CSI, which will promote various applications in wireless
sensing.

The rest of the paper is organized as follows. We first
review the literature in §2 and describe the design space
in §3. We present SMARS design in §4, followed with the
implementation and evaluation in §5. Then we conclude this
paper in §6.

2 RELATED WORKS

SMARS is widely related to RF-based motion sensing,
breathing estimation, and sleep monitoring, which have
attracted numerous research interests. Most commercial so-
lutions use contact sensors. For example, the medical gold
standard PSG attaches a set of wired sensors to human
body, which may cause significant discomfort and disrupt
sleep and limits itself to clinical usage for patients. The
research [4] shows that some of the vital signals, including
respiratory rate, heart rate, are strongly correlated with
sleep stages, and the work [19] shows the feasibility of
sleep staging based on the breathing estimates alone. The
technologies, such as PPG, ACT, and BCG [3], either require
users to wear sensors or need to instrument the mattress
to monitor the vital signs, making them suitable mainly
for subjects who need special care. Similarly, novel in-ear
sensor [20] is also less-than-ideal for the public. Some works
leverage smartphone built-in sensors like accelerometers
and microphones [21], [22], [23] to monitor movements and
sound during sleep. Due to limited accuracy, these works
only provide coarse-grained results and fail to stage sleep.

Non-contact solutions are more preferred and widely
studied. Particularly, RF signals like WiFi, mmWave, UWB,
and Doppler radar are recently investigated for breathing
estimation and sleep monitoring [24], [25], [26], [27]. Many
works exploit WiFi signals to estimate breathing [5], [13],
[14], [18], [28], [29] and/or sleep monitoring [11], [12].
Despite that only controlled and short studied are con-
ducted, these works cannot learn sleep stages due to large
estimation errors. For example, the approaches proposed
in [12] produce 95%-tile error of >10 BPM, as evaluated by
[24]. FMCW radar [6], [9], [10] is also leveraged to monitor
breathing. Among them, [9], [10] is capable of staging sleep,
which, however, rely on specialized radios, rendering them
not ubiquitously applicable. A number of works also aim
at monitoring user motions and activities using RF signals,
such as walking, standing, running, and various gestures,
e.g., [7], [30], [31], [32]. They mainly focus on large motions
caused by activities when user is awake but cannot detect
breathing during sleep. We envision our statistical model
will stimulate a wide range of RF sensing applications that
have been studied and that are yet to be imagined.

3 GOALS AND SCOPE

Different from controlled and short experiments conducted
in previous studies, we envision that SMARS can be de-
ployed in a smart home to monitor a person’s overnight
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breathing and movements in real-world scenarios, without
body and bed instrumentation. SMARS can continuously
track the subject’s immediate respiratory rate changes dur-
ing different sleep stages, precisely with sub-BPM accu-
racy and instantaneously with sub-second time resolution.
Furthermore, the system, built upon a single RF link, can
monitor breathing at distances up to 10 meters or behind a
wall, providing a good coverage for common bedrooms. In
addition, the breathing estimation is robust to various sleep
positions and postures, and independent from different en-
vironments or subjects. Last, considering practical in-home
use, SMARS is designed based on commodity off-the-shelf
devices, especially those already existing in today’s smart
homes, e.g., WiFi routers. The system works with fairly low
sampling rate of 30 Hz or even 10 Hz, producing negligible
impacts on in-home wireless connections.

SMARS also provides the capability to detect extraneous
motions (walking or other body motions beyond breathing),
which could dominate breathing motion and render it not
detectable1. SMARS can detect arbitrary motions and use
the quasi-static periods without large motions for breathing
estimation. SMARS then stages a person’s overnight sleep
by fusing both motion statistics and breathing rates. SMARS
is mainly designed for ubiquitous in-home sleep monitoring
and not for critical sleep evaluation in hospitals and sleep
labs.

1. Even wearables like chest bands cannot get reliable estimates
under large non-breathing motions since breathing is buried in such
cases.
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Fig. 4: The normalized CSI power response matrix with the
presence of breathing signals. To facilitate the visualization,
G(t, f) is smoothed and normalized to the same amplitude
over time for each subcarrier.

4 SMARS DESIGN

In this section, we present the design of SMARS, which
incorporates two key modules: 1) instantaneous breathing
rate estimation; and 2) sleep monitoring as illustrated in
Fig. 2.

4.1 Instantaneous Breathing Rate Estimation

In the following, we first introduce the concept of CSI and
model the impact of human motion on the variations of
CSI from a mathematical perspective. Then, we present a
statistical approach to extract the breathing rate from the
CSI data measured by a single subcarrier, and show how
SMARS combines multiple subcarriers to maximize the SNR
of breathing signals.

4.1.1 Theory of Operation

Given a wireless transmission pair each equipped with om-
nidirectional antennas, the Channel State Information (CSI),
for the fading multipath channel at time t, is commonly
modeled as [33]

H(t, f) =
∑
l∈Ω

al(t) exp(−j2πfτl(t)), (1)

where al(t) and τl(t) denote the complex amplitude and
propagation delay of the l-th multipath component (MPC),
respectively, and Ω denotes the set of MPCs. The prop-
agation delay is a function of the propagation distance:
τl(t) = dl(t)

c , where c is the speed of light and dl(t) is the
traveled distance of the l-th MPC. f denotes the particular
frequency where the channel is measured. For example,
in an OFDM-based communication system, such as WiFi,
LTE, 5G, etc., the CSI is measured at each subcarrier with
frequency f .

CSI depicts how radio signals propagate from a trans-
mitter (Tx) to a receiver (Rx), e.g., reflected or scattered
off all reflectors in the space such as the walls, furniture,
human bodies, etc., and is highly sensitive to environmental
perturbations. Any body motions, including tiny chest and
abdomen movements during breathing [34], will alter the
paths of signal propagation and thus modulate the wireless
signal before it arrives at the receiver, allowing SMARS to
capture these motions and monitor human’s sleep from the
measured CSI time series.

4.1.2 Modeling Motion in CSI
Most of the existing works adopt an overly simplified two-
ray model [7], [15], which incorporates the direct path be-
tween the Tx and Rx and the reflection path that is reflected
off the surface of human body, to analyze the effect of
human motion on the CSI, and accordingly attempt to geo-
metrically interpret multipath constructive and destructive
interferences. However, the two-ray model are developed
for and only hold in outdoor environments [16], which
is not suitable for indoor environments. This is because,
in reality, signals bouncing off human body may reflect,
scatter, and diffract before finally being superimposed at the
receiver, producing up to hundreds of multipaths indoors
[17], as illustrated in Fig. 3. As a result, existing methods
can only work in clear LOS scenarios with strong breathing
in proximity, where a dominant reflection path exists. A
more realistic model is demanded for practical motion and
breathing sensing.

Consider the case when there is a static person breathing
indoors with a cycle of Tb seconds. As shown in Fig. 3, the
MPCs can be classified into two sets: Ωs and Ωd(t), where Ωs
denotes the set of time-invariant MPCs, e.g., reflected off the
floor and walls, and Ωd(t) denotes the set of time-varying
MPCs, e.g., reflected off the human body. Due to the periodic
chest or abdomen movement during normal breathing, the
propagation distance dl(t) of each MPC ∀l ∈ Ωd(t) changes
periodically with the same cycle as the breathing movement,
i.e., dl(t + Tb) = dl(t). Since the amplitude of breathing
movement is small, the change in the propagation distance
for each dynamic path is also small. Therefore, it is reason-
able to assume that the complex amplitude of each MPC
al(t) is time-invariant within a sufficiently short period.
Thus the CSI can be written as

H(t, f) =
∑
ls∈Ωs

als exp(−j2πf dls
c

)

+
∑

ld∈Ωd(t)

ald exp(−j2πf dld(t)

c
)

, Hs(f) +Hd(t, f), (2)

where Hs(f) and Hd(t, f) denote the contribution of the
time-invariant MPCs and time-varying MPCs, respectively.

In real measurements, H(t, f) is corrupted by the phase
noise, caused by the timing and frequency synchronization
offsets, and the additive thermal noise ε(t, f), and the re-
ported CSI H̃(t, f) can be expressed as

H̃(t, f) = exp(−j(α(t) + β(t)f))H(t, f) + ε(t, f), (3)

where α(t) and β(t) are the random initial and linear phase
distortions at time t, respectively. Define the channel power
response G(t, f) as the square of the magnitude of H̃(t, f):

G(t, f) , |H̃(t, f)|2

= |H(t, f)|2 + 2Re{n∗(t, f)H(t, f)

exp(−j(α(t) + β(t)f))}+ |ε(t, f)|2

, |H(t, f)|2 + ε(t, f), (4)

where the superscript ∗ denotes the operator of complex
conjugate, the operator Re{x} denotes the real part of x,
and ε(t, f) is defined as the noise term, which can be
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Fig. 5: The illustrations of ACFs under LOS and NLOS
scenarios.
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approximated as additive white Gaussian noise (AWGN)
with variance σ2(f) and is statistically independent of
H(t, f) [35]. From (2) and the fact that dl(t + Tb) = dl(t),
∀l ∈ Ωd(t), we have |H(t + Tb, f)|2 = |H(t, f)|2. Thus
G(t, f) is modeled as a noisy periodic signal with a period
of Tb.

As shown in Fig. 4, we measure the CSI power response
G(t, f) using a pair of commercial WiFi devices for both
the two cases, when a subject is breathing in a LOS and
a NLOS location with respect to the transmission pair,
respectively. For the LOS case, the strength of the measured
breathing signal is strong and the periodic pattern can be
easily observed by most subcarriers as shown in Fig. 4(a).
For the NLOS case as shown in Fig. 4(b), however, there are
no apparent periodic patterns that can be observed since the
breathing signal is much weaker.

Note that G(t, f) is a result of numerous multipath
components [17] adding up together in a complex way
expressed in (2). As shown in Fig. 4(a), both the amplitudes
and the phases of the breathing signal measured by CSI are
different for different subcarriers. Accordingly, it is reason-
able to express |H(t, f)|2 in the following form:

|H(t, f)|2 = g(f)b(t−∆tf ), (5)

where b(t) denotes a periodic stationary breathing signal
with zero mean, which is related to the movement of the
chest and abdomen, and g(f) and ∆tf stand for the gain
and the random initial phase of the breathing signal mea-
sured at the frequency f , respectively.

Combining (4) and (5), the received signal at subcarrier
with frequency f is expressed as

G(t, f) = g(f)b(t−∆tf ) + ε(t, f). (6)

Breathing estimation is then conducted based on the power
response G(t, f), which circumvents the use of noisy CSI
phase and the usually handcrafted phase cleaning step.
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Fig. 7: Features extracted from the derived ACF for breath-
ing detection and estimation.

4.1.3 Estimating Breathing Rate
Observing that breathing signal is periodic, previous meth-
ods usually perform frequency analysis on the CSI data col-
lected in a time window to estimate breathing rate [5], [11],
[12]. These methods require a large delay (e.g., more than
30 seconds) to gain better frequency resolution, and cannot
observe immediate breathing rate changes, since breathing
rate is assumed to be constant during the time window.
Differently in SMARS, we adopt a statistical approach by
examining the autocorrelation function (ACF) of CSI power
responseG(t, f), which significantly shortens the time delay
and produces instantaneous estimation.

ACF Calculation. The ACF for a stationary signal x(t) is
defined as follows:

ρ(τ) =
cov[x(t), x(t+ τ)]

cov[x(t), x(t)]
, (7)

where τ denotes the time lag, and cov[·] denotes the covari-
ance operator. Thus the ACF of G(t, f) is computed as

ρG(τ, f) =
g2(f)

g2(f) + σ2(f)
ρb(τ) +

σ2(f)

g2(f) + σ2(f)
δ(τ), (8)

where ρb(τ) is the ACF of b(t), and δ(τ) denotes the Dirich-
let function. Define k(f) , g2(f)

g2(f)+σ2(f) as the normalized
channel gain, and for τ 6= 0, we have

ρG(τ, f) = k(f)ρb(τ). (9)

In practice, the sample ACF is used instead [36], which
is an estimate of the ACF, and we use n(τ, f) to stand for
the estimation noise of the ACF, i.e.,

ρ̂G(τ, f) = k(f)ρb(τ) + n(τ, f). (10)

As shown in Fig. 5, when there is a breathing signal, the
ACF will exhibit a definite peak at a certain delay (although
the peak value may differ over different subcarriers), con-
tributed by the periodic breathing motions. On the contrary,
no prominent peaks can be observed on any subcarrier
when there is no breathing (i.e., no periodic motions). In
principle, as shown in Fig. 6, a time delay slightly longer
than one breathing cycle (e.g., 5 to 7 seconds) is sufficient to
pick up the first breathing rate and later on instantaneous
estimates can be produced every one second.

Motion Statistic. Prior to breathing estimation, a key
step is to examine whether there exists any extra large
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motions. As mentioned previously, breathing will easily be
buried in other large body motions, and should not be
estimated in such case. As shown in Fig. 5(a) and (b), the
first time lag of the ACF of a subcarrier, named as the
motion statistic in the following, indicates the strength of
total motions, including periodic and non-periodic motions,
existing in the monitored area. A very large motion statistic
indicates the presence of large motions, such as walking
and standing up, and a very small motion statistic that is
close to 0 indicates that there is no significant motion in the
environment. When there is only breathing motion in the
monitored area, the motion statistic of each subcarrier shows
the sensitivity of that subcarrier to the breathing motion.

Breathing Detection and Estimation. Based on the cal-
culated ACF, SMARS first detects the presence/absence of
breathing and, if present, it then estimates the breathing
rate. As shown in Fig. 7, for a subcarrier with frequency
f , we extract the following five features from ρ̂G(τ, f) after
the locally estimated scatterplot smoothing (LOESS) for
breathing detection [37], in addition to the motion statistic:

1) Peak prominence: the vertical distance between a peak
value and the largest height of the adjacent valleys,
which measures the likelihood of the existence of
the peak;

2) Peak width: the horizontal distance between the two
adjacent valleys, which also measures the likelihood
of the existence of a peak;

3) Peak amplitude: the height of a peak, which measures
the amplitude of the ACF of the breathing signal
and will be comparable to the value of motion
statistic in presence of only breathing motion;

4) Motion interference ratio: the ratio between the mo-
tion statistic and peak amplitude, which measures
the degree of the interference of the non-breathing
motion, such as body movements, walking, stand-
ing up, typing keyboard, etc., in the environment;

5) Peak location: the horizontal distance between the
origin and the peak (i.e., time lags), which measures
the breathing cycle.

In general, the larger the motion statistic, peak promi-
nence, peak width, peak amplitude and the smaller the
motion interference ratio, the more likely is the presence
of the breathing signal. In other words, a breathing signal
is detected only if the motion statistic, peak prominence,
peak width and peak amplitude are all larger than their
respective preset thresholds and the motion interference
ratio is smaller than its preset threshold. Then, once there
is a breathing signal, the breathing rate can be estimated as
BR = 60/τ̂ BPM, where τ̂ is the location (i.e., time lags)
of the first dominant peak of ρ̂G(τ, f). Note that SMARS
prioritizes all the potential local peaks of ρ̂G(τ, f) based on
their locations, and the peak with a smaller time lag value
has a higher priority.

4.1.4 Maximizing Breathing Signal
In practice, the SNR of the breathing signal on each subcar-
rier modulated by minute breathing motions is very low,
especially when the person being monitored is far away
from the link, covered by quilts, or behind the wall. As
shown in Fig. 5, the SNR of the ACF for NLOS breathing
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Fig. 9: Example of MRC scheme for breathing signal maxi-
mization. Subcarrier (SC) 1, 2 and 3 rank the first, sixth and
tenth respectively among the 114 subcarriers from a link
according to k̂(f).

is significantly lower than that for LOS scenarios. Previous
approaches attempt to select a set of best subcarriers among
others, or take an ensemble average over all subcarriers to
improve the quality of the breathing signal strength [5], [11],
[12], [13]. However, we make the following observations
that demonstrate the flaws of these methods: 1) Any single
subcarrier does not produce the optimal estimation, no
matter what criteria is used for selection. 2) CSI amplitude
or its variance is not an effective metric for subcarrier
selection. The subcarrier with largest amplitude or variance
usually does not capture the breathing signal to the best.
3) Due to frequency offsets across different subcarriers, CSI
amplitudes responding to the person’s breathing are un-
synchronized and contain uncertain offsets (Fig. 4). Hence
the CSI on different subcarriers cannot be directly averaged,
which does not necessarily amplify, yet may instead rule out
breathing signals. As a consequence, previous approaches
do not produce reliable, not to mention optimal estimation.

To boost the breathing SNR, SMARS devises a novel
scheme to combine the breathing signals measured on mul-
tiple subcarriers in an optimal manner. Our design is based
on Maximal Ratio Combining (MRC), a general diversity
fusion strategy with successful applications in wireless com-
munications, that maximizes SNR by combining multiple
received signals [38].

MRC Model. We first review the basic concept of
MRC in telecommunications in the following. Let vector
x = [x1, . . . , xN ]T denote the received signal at N an-
tennas, which can be written as x = hu + n, where
h = [h1, . . . , hN ]T denotes the constant channel gains, u
denotes the transmitted random signal with unit power,
and n = [n1, . . . , nN ]T stands for the identically and
independently distributed (I.I.D.) additive white Gaussian
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noise (AWGN) with variance σ2. Let r denote the linearly
combined signal:

r = wTx = wThu+ wTn, (11)

where w = [w1, . . . , wN ]T denotes the normalized weight
of each received signal at each antenna, that is, ‖w‖ = 1. The
SNR, denoted as γ, of the output signal r can be denoted as

γ =
E[|wThu|2]

E[|wTn|2]
=
|wTh|2

σ2
. (12)

By the Cauchy-Schwarz inequality, we have |wTh|2 ≤
‖w‖‖h‖. The equality is achieved when w is linearly pro-
portional to h, i.e., w∗ = h/‖h‖, and the maximum of
output SNR can be obtained as the sum of the SNR of
received signals at each antenna, i.e., γ = γ1 + · · · + γN ,
where γi = |hi|2/σ2.

MRC on Breathing Signal. In the context of breathing
estimation with CSI, the breathing signal b(t) is measured
by multiple subcarriers. The SNR of the breathing signal,
denoted as γ(f), measured on subcarrier with frequency f
at time t is defined as

γ(f) =
E[(g(f)b(t−∆tf ))2]

E[ε2(t, f)]

=
g2(f)E(b2(t−∆tf ))

σ2(f)
, (13)

where E[·] stands for the expectation operator. For conve-
nience, the average power of the breathing signal b(t) is
normalized to unit power by definition, that is, E[b2(t)] = 1.
Thus we have γ(f) = g2(f)/σ2(f).

When applying MRC to exploit subcarrier diversity to
maximize the overall SNR of the measured breathing signal
optimally, however, we face three fundamental challenges:

1) The variance of the noise term in (6) is σ2(f), which
is unknown and dependent on the frequency f ,
while MRC assumes the same variance of the noise
for all the receiving elements;

2) The offset of the breathing signal ∆tf in (6) is
incoherent for different subcarriers, while MRC re-
quires that the transmitted signal is the same for all
receiving elements;

3) The channel gain g(f) in (6) is unknown, while
MRC relies on the channel gain to compute the op-
timal combining weights for the receiving elements.

Fortunately, by using ACF instead of G(t, f), SMARS
successfully transforms the breathing signal into an appro-
priate form to apply MRC for optimal subcarrier combining.

Recall §4.1.3, when the breathing signal is extremely
weak, i.e., k(f) is close to zero, G(t, f) is dominated by the
white noise and thus, each tap of its ACF follows a zero-
mean normal distribution with equal variance 1/N [36], i.e.,
n(τ, f) ∼ N (0, 1/N), where N is the number of samples
used in the ACF estimation. Thus the variance of n(τ, f) is
identical for different subcarriers, solving the first challenge.

As shown in Fig. 9, the ACF ρb(τ) are inherently syn-
chronized over all subcarriers and is independent of the
time origin. In other words, different subcarriers experience
the same signal ρb(τ), which addresses the second chal-
lenge.

0 20 40 60 80 100

Variance of amplitude

Motion statistics

Fig. 10: Comparison of the subcarrier selection schemes.
The best subcarriers selected by the mean and variance
are merely ranked 113-th and 95-th, respectively, when
considering their motion statistics.

Regarding the third challenge, the channel gain k(f)
can be estimated as follows. For the case of single subject
breathing, recall (9), when τ → 0, we have

lim
τ→0

ρG(τ, f) = k(f) lim
τ→0

ρb(τ). (14)

Since the movement of chest and abdomen is continuous,
the breathing signal b(t) is also continuous in time and we
have limτ→0 ρb(τ) = 1, which leads to limτ→0 ρG(τ, f) =
k(f). As a result, when the channel sampling rate Fs is high
enough, the quantity ρ̂G(τ = 1/Fs, f) is close to the channel
gain k(f). That is, k(f) can be estimated as

k̂(f) = ρ̂G(τ = 1/Fs, f), (15)

which is the same as the motion statistic. This is a key feature
that underpins the use of MRC; otherwise one can still com-
bine different subcarriers, but not optimally. To conclude,
MRC can now be applied to the ACF of the breathing signal
to maximize the SNR.

Maximizing Breathing SNR. We now maximize the
SNR of the ACF of the breathing signal, instead of the
SNR of the breathing signal, as in (5), which cannot be
directly maximized since the channel gain and noise cannot
be measured in CSI.

Recall (10) and that the variance of the noise term is
approximated as 1/N , and thus, the SNR of the ACF of
each subcarrier can be estimated as Nk̂2(f). Since the SNR
of the breathing signal after MRC is the additive of the SNR
measured by each subcarrier, the SNR of the combined ACF
is expressed as

γ = N
∑
f∈F

k̂2(f). (16)

Given a fixed number of subcarriers and sample number of
N , it will be maximized by setting the optimal weight w?(f)
to ρ̂G(τ = 1/Fs, f) in the following linear combination: ∀τ ,

ρ̂b(τ) =
∑
f∈F

w?(f)ρ̂G(τ, f)

=
∑
f∈F

ρ̂G(τ = 1/Fs, f)ρ̂G(τ, f). (17)

Here ρ̂b(τ) is the ACF of the combined signal.
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Fig. 11: Comparison between SMARS and spectrum-based
method.

Fig. 8 summarizes the proposed scheme for breathing
signal extraction and maximization. The left part of the
figure shows the decomposition of the measured ACF of the
channel power response when a person breathes normally
in the monitored area, and the right part shows the MRC
scheme for boosting the SNR of the ACF of the breathing
signal. Fig. 9 depicts an illustrative example based on real-
world measurements, where the SNR of the breathing signal
is amplified by 2.5 dB compared to that obtained by the
subcarrier with the largest variance and by 3.7 dB com-
pared to that obtained by directly averaging all subcarriers.
Fig. 10 further demonstrates the gains of our ACF-based
MRC scheme and confirms our observations in §4.1.4 that
amplitudes and their variances are not effective metrics for
subcarrier selection. As seen, the subcarrier that is the most
sensitive to motion (i.e., holding the largest motion statistic)
could experience very small amplitude and low variance.

Given the combined breathing signal with maximized
SNR, SMARS then performs breathing detection and esti-
mation, as described in §4.1.3, based on ρ̂b(τ), the combined
ACF, instead of ρ̂G(τ, f) on a specific subcarrier, as illus-
trated in Fig. 6. The detailed procedures of the proposed
breathing estimator have been summarized in Algorithm 1.

Algorithm 1 SMARS Breathing Estimation

Input: N consecutive CSI measurements till time t: H(s, f),
s = t− N−1

Fs
, ..., t− 1

Fs
, t, and f ∈ F ;

Output: Breathing rate: BR(t), and motion statistic: MS(t).
1: Calculate the CSI power response: G(s, f) ←
|H(s, f)|2, for ∀s and ∀f ;
2: Calculate the ACF of each subcarrier f : ρ̂G(τ, f) ←
1
N

∑t
s=t−N−1

Fs
+τ

(
G(s− τ, f)− Ḡ(f)

) (
G(s, f)− Ḡ(f)

)
,

where Ḡ(f) is the sample mean of the current window;
3: Aggregate ACF across all the subcarriers: ρ̂b(τ) =∑
f∈F ρ̂G(τ = 1/Fs, f)ρ̂G(τ, f);

4: Extract the six features related to the breathing signal
from ρ̂b(τ) as described in §4.1.3;
5: BR(t)← 60/τ̂ BPM, when breathing signal is detected,
otherwise BR(t)← 0, and MS(t)← ρ̂b(τ = 1/Fs).

Remark. Traditional spectrum-based methods usually
need a long duration of CSI measurements, e.g., Tw = 63
seconds [39], where Tw denotes the duration of the window,
to estimate the breathing frequency with an acceptable
accuracy. By contrast, thanks to the proposed SNR boosting
scheme, SMARS only needs a very short duration of CSI
measurements, just slightly longer than one cycle of a breath
as shown in Fig. 7, to harvest the tiny energy of breathing
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Fig. 12: Empirical CDFs for the motion ratio and breathing
ratio under two states: wake and sleep.

signal on multiple subcarriers, which enables SMARS to
track time-varying breathing rates. In addition, since the
breathing cycle is estimated in time domain, SMARS can
achieve a much higher resolution and accuracy in breathing
cycle estimation, 1/Fs seconds per breathing cycle, where
Fs denotes the sampling rate of CSI measurements. For
the above reasons, SMARS is able to track instantaneous
changes of breathing rate with a high accuracy, as shown
in Fig. 11, which provides much more detailed information
about sleep stages.

4.2 Sleep Monitoring
In the following, the algorithm of sleep stage recognition of
SMARS and sleep quality assessment are presented in §4.2.1
and §4.2.2, respectively.

4.2.1 Sleep Stage Recognition
SMARS divides the continuous motion and breathing esti-
mates of overnight sleep into 300-second epochs2. For each
epoch, SMARS recognizes three different sleep stages, i.e.,
wake, REM sleep and NREM sleep3. The staging is per-
formed in two steps: first, SMARS differentiates wake from
sleep mainly by body motions; second, REM and NREM
stages are further identified during sleep period.

Sleep/Wake Detection. The key insight to identify the
sleep and wake states is that, more frequent body move-
ments will be observed when a subject is awake, while
mainly breathing motion presents when she/he is asleep.
SMARS utilizes the motion statistic defined in §4.1 to distin-
guish between the two states, since bodily movements are
significantly stronger than breathing motions, and both of
them can be easily captured and quantified by it.

Specifically, we define motion ratio as the percentage of
time when the motion statistic, ρ̂b(1/Fs), is larger than a
preset threshold. Thus for the wake state, a higher motion
ratio is expected, as shown in Fig. 12(a). Similarly, we
also define breathing ratio as the percentage of time when
the breathing signal is detected. Since bodily movements
destroy the periodicity of the environmental dynamics, the
breathing ratio will be lower when a subject is awake, as
shown in Fig. 12(b).

2. Note that AASM [40] defines the length of an epoch as 30 seconds,
which is based on a high-resolution EEG data. However, for respiratory
data, it is recommended to use 300-second epochs to score respiratory
events [40], [41]. This is because the average breathing cycle is about
4 seconds, and a 30-second epoch only contains about 7 complete
breathing cycles, which are too few to get reliable statistics.

3. Since the respiratory features are only correlated with REM and
NREM sleep according to clinical facts [42], respiration-based ap-
proaches, including SMARS, could not further differentiate between
NREM 1, 2, and 3.
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Fig. 13: Features for REM-NREM classification. (a) The his-
togram of the breathing estimates of a whole night; (b) the
distributions of breathing rate deviation and variability for
NREM and REM sleep (each dot represents for an epoch).

Combining the above two features, SMARS labels an
epoch as sleep only when the motion ratio is smaller than
the predefined threshold and the breathing ratio is larger
than another threshold. Both thresholds are empirically
determined as in Fig. 12. Since our model statistically con-
siders all multipaths indoors, the values of both thresholds
generalize to different environments and subjects.

REM/NREM Recognition. SMARS exploits the follow-
ing clinical facts [42] and accordingly extracts two distinc-
tive features from breathing rate estimates for REM/NREM
stages classification: Breathing rate is usually faster and
exhibits higher variability and irregular patterns for REM
stage, while it is more stable and slower for NREM stage.

Since NREM stage constitutes the majority (about 75% to
80%) of total sleep for typical healthy adults (Fig. 1) [42], the
average breathing rate during NREM stage can be estimated
by localizing the peak of the histogram of overnight breath-
ing rate estimates, as shown in Fig. 13(a). On this basis,
we define breathing rate deviation, the distance between the
estimated average NREM breathing rate and the 90%-tile of
the breathing rate for each epoch, to quantify the deviation
of the breathing rate from the baseline during NREM stage.

To extract the variability of the breathing rate for each
epoch, we first estimate the trend of breathing rate by
applying a 10-th order low-pass Butterworth filter with a
normalized cutoff frequency of 0.1 to the breathing estimates
of the whole night, and obtain the detrended breathing
rate estimates by subtracting the trend from the original
breathing rate estimates. Then, the breathing rate variability
is defined and calculated for each epoch as the variance of
the detrended estimates normalized by the length of epoch.

Fig. 13(b) visualizes the distribution of the proposed two
features under NREM and REM sleep, respectively. As seen,
the majority of the breathing rate variability and breathing rate
deviation of NREM sleep are much smaller than those of
REM sleep. Based on these two features, we train a support
vector machine (SVM) [43], a widely used binary classifier,
to differentiate between REM and NREM sleep.

To be more specific, the radial basis function (RBF) kernel
is used in the SVM classifier since the boundary of the two
clusters appears to be nonlinear. K-fold cross validation is
applied to train the SVM model. The 5 night data with
PSG groundtruth has been shuffled randomly and divided
into 5 folds. The performance metric of the trained model
is obtained by the average of the values computed in each
training. Since the typical proportion of REM sleep is only
about 20% of the total sleep time, the cost of misclassification
for the two classes are also adjusted according to their
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Fig. 14: Comparison between PSG and SMARS on sleep
staging in real-world deployment.

proportion of appearance, that is, the cost of misclassifying
REM as NREM is four times larger than that of misclassify-
ing NREM as REM. Fig. 1 and Fig. 14 show the comparisons
between SMARS and the PSG on sleep staging for three
nights. Note that the length of each epoch is 300 seconds,
and the label of each epoch for both methods represents the
majority of the sleep stages within that epoch.

4.2.2 Sleep Quality Assessment

When we obtain the estimates of wake, REM, and NREM
stages of an overnight sleep, we can assess the elusive
sleep quality for a user by following standard approach
used in clinical practice. In particular, we calculate the
sleep score for each night based on the recognized sleep
stages as follows. Let TN , TR and TW denote the durations
(measured in hours) of NREM sleep, REM sleep and wake,
respectively. Since there is no standard formula for sleep
score calculation, a simple formula for the sleep score is
applied in SMARS [44] [45]:

S = 10 ∗ TN + 20 ∗ TR − 10 ∗ TW , (18)

which means that longer sleep time and REM duration,
less awake time will result in better sleep score. According
to recent research [46], REM sleep is crucial for mental
recovery, and thus a higher weight has been assigned to
REM sleep.

SMARS envisions a practical sleep monitoring for daily
in-home use. Although it does not make much sense to
compare the sleep score among different users, the trend or
history of the sleep score for a particular user would reflect
the changes of his/her sleep quality. We believe such results
provide clinically meaningful evidences to help diagnose
sleep disorders and manage personal health, in an attractive
way.

5 IMPLEMENTATION AND EVALUATION

In this section, we present the system implementation and
experimental evaluation of SMARS. We first conduct field
studies to evaluate the performance of SMARS and compare
it with medical PSG devices as well as other commercial
solutions. We then present overnight case studies in 6 homes
to show SMARS’s capability of monitoring and staging sleep
in real-world scenarios.
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5.1 Implementation

We implement a comprehensive system on compact embed-
ded devices for rapid real-world deployment. The devices
run Linux with the 3.18.71 kernel and are equipped with
commodity Atheros WiFi chipsets. We modify the driver
to expose CSI, which is reported with 114 subcarriers for
channels on 5.8 GHz WiFi band. Our system consists of a
Tx that by default transmits standard WiFi packets at a rate
of 30 Hz and an Rx that captures CSI of every packet it
received from the Tx. Unless specified otherwise, the Tx is
equipped with 2 antennas and the Rx has 3 antennas.

We implement our system in C++, which runs in realtime
on the Rx device, calculating the breathing rates and motion
statistics as a function of time and sending the data back
to a central server via Internet for visualization and sleep
staging. The code generates new estimates of both motion
and breathing every 1 second. To comprehensively evaluate
the impact of different values of the parameters on the per-
formance of SMARS, we also implement a separate realtime
version of Matlab code, in the same logic as the C++ code,
which runs on a Windows laptop.

5.2 Methodology

Data Collection. Our data collection involves two parts:
First, we carry out extensive real-world case studies by
deploying our system in 6 homes (including typical houses
and apartments) with 6 willing participants. We have 1
female participant and 5 males, aging from 12 to 31 and
weighted between 115 and 195 lbs. In total, we collect 32
nights (a total of about 234 hours) of sleep data. Two of
the users contributed more than a week’s data. Despite the
large coverage of SMARS, it is still highly recommended
that both of the Tx and Rx are placed close to the bed. This
is to make sure that the weak breathing signal can be picked
up continuously throughout the whole sleep regardless of
different sleep postures and the kinds of quilts used by the
user. In addition, especially for the apartment environment,
the motion from the neighbors next door would be more
unlikely to be detected by SMARS if both the Tx and Rx
are placed in the same room. Examples of settings of our
devices are shown in Fig. 15, which will be changed by users
from one night to another and from one home to another.
The receiver is put close to the bed, while the transmitter is
placed within the same room for four settings and outside
the bedroom for the other two settings. For every night, the
users turn on the system for monitoring when they go to
bed and stop it after they get up. During sleep, the subjects
wear their daily nightgowns and tuck in typical covers
like blankets and quilts as they usually do. In addition,
the subjects sleep in a natural way, meaning that they are
not instructed to lie in a certain position for a certain time

period. Instead, they could move their bodies and change
sleep postures at will. Normal environmental changes occur
regarding the bedroom settings including bedding, tables,
closets, etc., during long-term data collection. We note that
our study is conducted in real-world scenarios without mak-
ing any impractical assumptions, completely different from
the controlled and short experiments by previous works [5],
[11], [12], [13], [14], [15], [27]. All human subjects involved
in the data collection were approved by our internal review
board (IRB).

Second, we conduct experiments in our lab, a typical
office building, to study the coverage of SMARS’s motion
and breathing detection and further look into the factors
which impact the performance. The building contains 10
rooms separated by standard dry walls and furnished with
desks, chairs, couches, shelves and computers. During the
experiments, there are normal wireless traffics in the air.

To obtain groundtruth labels of sleep stages, we resort
to the medical gold standard PSG devices [47]. Participants
willing to collect PSG data are dressed with a number of
contact sensors that record breathing and sleeping data.
During sleep, these sensors and our system are simultane-
ously recording measurements. In total, we have five nights
of PSG data. The PSG data (mainly EEG) are annotated
with different sleep stages, according to the AASM specifica-
tion [40], with an epoch length of 30 seconds. Then every ten
of the 30-second epochs are combined to form a 300-second
epoch according to the majority voting scheme, which are
for the following comparison with SMARS. Breathing rate
is derived by the nasal airflow sensor of PSG.

Open dataset. We also validate our system on a public
open dataset (denoted as POD in the following) [48], which
was recently released by a real-world comparative study
[24] on four state-of-the-art RF-based respiratory monitoring
systems. The dataset contains 160 hours of overnight sleep
data measured from twenty patients, including 11 male
participants and 9 females with respective median ages of 55
and 60 years old. The CSI is measured from a 2 × 2 MIMO
system at a sampling rate of 9.9 Hz, with 114 subcarriers on
each antenna pair. The PSG data are clinically labeled with
detailed sleep stages. In this dataset, all four RF testbeds are
positioned in an optimal way so that the link line between
Tx and Rx is perpendicular to and on top of the subject’s
chest. Further details about the dataset can be found in [24],
[48].

Comparison. As our system outperforms the state-of-
the-art RF-based sleep monitoring works in terms of ac-
curacy, coverage and robustness to diverse working con-
ditions, we choose to compare with commercial products
using radar and contact sensors. Specifically, we select
ResMed, which employs low-power radar technology, and
EMFIT [44], which embeds an array of EMFi sensors into a
mat that underpins the mattress. The list prices of ResMed
(Sleepscore Max) and EMFIT are $149 and $299, respec-
tively. For comparison, we monitor the participant’s sleep
with multiple systems simultaneously and compare the
overnight outputs of individual technologies. ResMed only
works in a short range of up to 2 meters. Thus we place it 1
meter away from the subject’s chest during our experiments.
As ResMed only provides stage data but no raw breathing
data, we only compare sleep staging performance with it.
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As for the open dataset, we compare the performance of
SMARS with the results reported in [24].

5.3 Breathing Estimation Performance

5.3.1 Overall Performance

We study and compare the overall performance of SMARS
with the state-of-the-art works and commercial products.

Accuracy. We evaluate the accuracy of breathing rate
estimation on both our own measurements and the open
dataset. As shown in Fig. 16, evaluation based on our own
data demonstrates that SMARS achieves a remarkably high
accuracy. In particular, the median error is 0.47 BPM and
the 95%-tile error is only 2.92 BPM, using a sampling rate of
30 Hz. Fig. 16 also shows the results based on the open
dataset, which demonstrates similar performance with a
median error of 0.66 BPM and 95%-tile error of 3.79 BPM.
The accuracy is slightly worse since a lower sampling rate of
9.9 Hz is used in the open dataset. As comparison, the real-
world study in [24] reported that the best existing system
still produces a considerable median error of 2∼3 BPM and
a 95%-tile error of about 10 BPM under the same settings.

Besides exceeding existing research proposals, our so-
lution also produces considerably better performance than
commercial products based on contact sensors. Specifically,
as shown in Fig. 17, SMARS outperforms EMFIT by 0.39
BPM in median error and 1.86 BPM in 95%-tile error. The
result is somewhat counter-intuitive since contact sensors
should be better in principle. The sensor array of EMFIT,
however, is vulnerable to sleeping position and posture,
leading to occasionally unreliable estimates during sleep.
In contrast, as detailed subsequently, SMARS is more robust
regarding sleep position.

Instantaneity. Past works on breathing estimation can-
not capture instantaneous respiratory rate changes. A per-
son’s breathing rate, however, could change dramatically,
especially during REM stage (as measured by PSG in Fig. 1).
Thus it is interesting to understand SMARS’ capability of
tracking instantaneously varying breathing rate, which is
critical to sleep staging. For this purpose, we compare the
respective estimation accuracy in REM stage that usually
observes fast changing breathing and NREM stage that
normally observes relatively stable breathing. As illustrated
in Fig. 18, SMARS maintains consistently high accuracy,
regardless of stable or varying breathing. Although the esti-
mation errors slightly increase with fast changing breathing
(during REM stage), the median error is under 0.7 BPM and,
more importantly, the changing trend is precisely captured
(See upper right of Fig. 1). SMARS outputs one estimate
per second in realtime. The main computational complexity
of SMARS comes from the estimation of the ACF, giving

rise to a computational complexity of O(|F|N2), where |F|
denotes the number of available subcarriers and N denotes
the number of samples. It takes 0.14 s to process one-second
data on a laptop with Intel Core i7 processor and 16 GB
memory (Matlab version).

Coverage. SMARS enlarges the sensing coverage to an
unparalleled level thanks to its MRC scheme. To quan-
titatively understand the effective coverage, we conduct
experiments in a typical office building. We put a Tx and a
Rx, separate by 8.0 meters, and monitor a subject’s breathing
when he sits at locations that are from 1 to 10 meters
away to the link line. We use detection rate, defined as the
percentage of time when the breathing rate is successfully
picked up to the total amount of sleep time, to evaluate the
coverage. As shown in Fig. 19, SMARS achieves a detection
rate above 90% when the subject is 8 meters away and
still retains 88.7% and 65% at distances of 9 meters and
10 meters, respectively. Note that for distances larger than
6 meters, the subject is in another room and has no LOS
view to the Tx-Rx link. The coverage is even better than
systems using FMCW radar that covers 8 meters [6], not
to mention previous WiFi-based approaches that only work
when the Tx and Rx are both positioned next to a person
with the formed link line fairly close to the person’s chest.
Although the coverage would be slightly different under
different settings (e.g., device placement), our measurements
already demonstrate extraordinary coverage that is more
than sufficient for practical applications.

Robustness. With the goal of staging sleep, it is critical
to continuously monitor breathing throughout the whole
night. As verified by [24], however, previous works have
frequent periods when breathing cannot be reliably de-
tected. Thus in addition to the accuracy, we would like
to understand how robust SMARS is to natural overnight
sleep, during which the subject would change postures
and move body. As shown in Fig. 22, SMARS consistently
reliably detects breathing for 6 different subjects at 6 homes
that differ not only in device settings but also in building
structure, layout, bedding, and furniture, etc. In particular,
even in NLOS condition for user 5 and 6 who place the
Tx inside the closed closet and outside the bedroom re-
spectively, SMARS yields more than 80% detection rates.
Furthermore, Fig. 23 depicts that breathing detection rate
for two users’ one week data, which demonstrates robustly
high detection rate over different nights of natural sleeping.
These results suggest that our model is independent of
environments and subjects, and is capable of adapting to
various scenarios.
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5.3.2 Parameter Study

In the following, we examine the key factors that impact the
performance of SMARS’ breathing estimation.

Impact of MRC. MRC is a key module that improves the
accuracy, coverage, and robustness of SMARS. We examine
the benefits of MRC by comparing with an equal gain
combining (EGC) policy, which basically averages over all
subcarriers. As depicted in Fig. 19, MRC remarkably boosts
the detection rate in NLOS scenarios (cases with distances
>7 meters in Fig. 19) by more than 65% compared to EGC.
Fig. 20 further demonstrates significant gains brought by
MRC on overnight data. By using MRC, SMARS consis-
tently maintains high detection rates of >90%, regardless
of sampling rates of 30 Hz, 20 Hz, or 10 Hz. By comparison,
the detection rate of EGC is less than 70% when sampling
rate is 30 Hz. While MRC largely improves the detection rate
and thus extends the coverage and facilitates the robustness,
it provides marginal improvement in accuracy. Specifically,
the median accuracy is improved by 0.1 BPM with MRC
compared to EGC. The reason is that, as long as breathing
can be detected, our ACF-based approach will yield accurate
estimate.

Impact of Sampling Rate. We study the impacts of
sampling rate on SMARS. As shown in Fig. 16, the median
accuracy of breathing estimation decreases from 0.47 BPM
to 0.85 BPM when the sampling rate decreases from 30 Hz
to 10 Hz. The detection rate, as shown in Fig. 20, does not
change too much with respect to sampling rate. Note that
both the accuracy and detection rate on the open dataset
with 9.9 Hz sampling rate are better than our self-collected
data. This is because the open dataset was collected in an
optimal setting for previous works, i.e., the Tx and Rx were
placed exceedingly close to each other and to the subject,
while we deploy the devices in a natural and comfortable
manner during our data collection. To conclude, a higher
sampling rate will yield better performance while 30 Hz or
even 10 Hz is adequate in practice.

Impact of Effective Bandwidth. We study the impacts
of frequency diversity attributed by antennas via effective
bandwidth defined as We , NsB, where Ns denotes the
number of spatial streams between the Tx and Rx, and
B denotes the bandwidth of each stream (40 MHz in our
system). Fig. 21 shows that with the increasing of effective
bandwidth, the median error and 95%-tile error decrease,
and at the same time, the detection rate increases. The
results suggest that a 2×2 MIMO system (i.e., 160 MHz
effective bandwidth) is sufficient for SMARS to achieve a
remarkable performance.

TABLE 1: Comparison of different sleep monitoring sys-
tems.

Overall Wake Sleep REM NREM
SMARS 88.4% 86.7% 96.3% 86.9% 89.1%
EMFIT 69.8% 76.7% 98.2% 46.3% 74.9%
ResMed 81.2% 52.6% 95.3% 78.9% 87.2%

5.4 Sleep Staging Performance

In this section, we evaluate the performance in sleep staging
and compare with commercial products. We further carry
out a two-week case study for long-term daily sleep moni-
toring.

5.4.1 Sleep Stage Recognition Accuracy
We summarize the accuracy of SMARS compared to two
commercial products EMFIT and ResMed in Table 1. Fig. 24
shows the more detailed confusion matrices. As can be seen,
SMARS yields an overall accuracy of 88.4% in sleep staging,
outperforming commercial solutions EMFIT and ResMed,
which use contact sensors and UWB radar respectively.
In particular, SMARS achieves a recognition accuracy of
87%, 89% and 87% for wake/NREM/REM detection re-
spectively, which is better than EMFIT and ResMed. Note
that EMFIT performs staging with additional heart rate
measurements, ResMed further incorporates microphones
(from their smartphone APP), while SMARS purely relies
on breathing and motion estimation.

Regarding the public open dataset, SMARS cannot per-
form sleep staging well for those patients, although re-
markable accuracy in breathing estimation is achieved. This
is because, for those patients with severe diseases, such
as sleep apnea and periodic limb movement syndrome
(PLMS), their breathing pattern is not only affected by sleep
stages but also by the inherent, erratic chest movement and
abnormal respiration caused by the diseases [49]. Fig. 25
illustrates the overnight breathing, both the ground truths
and our estimates, for an elderly patient. As seen, the breath-
ing patterns fluctuate and do not exhibit distinguishable
patterns we observed in healthy subjects as in Fig. 1. As
a consequence, the natural relationship between breathing
patterns and sleep stages no longer holds for this patient. In
the future, we intend to study SMARS on a broad spectrum
of patients, ranging from normal subjects to those with
chronic sleep disorders. From these studies, we hope to
unveil the capabilities of SMARS as a diagnostic instrument,
and also as a supplementary health monitoring technology.

5.4.2 Long-term Daily Assessment of Sleep
To demonstrate the capability of SMARS for daily sleep
monitoring, we carry out a two-week case study for a
specific user. Every night, the participant sleeps with our
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ment over two weeks.

system running. During the data collection, the bedroom
environments, device locations, in addition to the bedding
and his nightclothes will change from night to night. Here
we assess the user’s sleep quality by calculating the sleep
score as specified in (18). Fig. 26 illustrates the historical
scores over the two-week term. Based on these quantitative
sleep quality statistics, SMARS offers useful data for per-
sonal healthcare.

6 CONCLUSION

This paper presents the design, implementation, and evalu-
ation of SMARS, the first practical sleep monitoring system
that exploits ambient radio signals to recognize sleep stages,
without instrumenting users’ body or the bed. SMARS
achieves this goal by monitoring breathing and body move-
ments during sleep accurately and instantaneously, to a
level of performance previously only attainable with ex-
pensive specialized infrastructure. A key enabler behind
is a statistical model that considers all reflection and scat-
tering multipaths indoors without making unrealistic as-
sumptions. We implement SMARS on commercial WiFi
chipsets and validate its performance on single-person sleep
monitoring by extensive experiments with 32 nights of data
collected in 6 homes. We believe SMARS takes a promising
step towards practical in-home sleep monitoring.
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