

RIM: RF-based Inertial Measurement

Chenshu Wu, Feng Zhang, Yusen Fan, K. J. Ray Liu University of Maryland, College Park and Origin Wireless Inc. August 20, 2019 @ ACM SIGCOMM'19

Motion Estimation

Robot Navigation

Mobiles & Wearables

Robots

Sports Analytics

Drones

Inertial Measurement Unit

Moving Distance

Heading Direction

Rotating Angle

Significant limitations in precise and robust motion estimation:

- Accelerometer: Noisy readings, step counting for distance
- **Gyroscope**: Accumulative errors due to integration
- Magnetometer: Environment interference, cannot infer heading direction

Existing Wireless Localization & Tracking

Mainly use geometric channel parameters like AoA, ToF

- Require phased arrays
- Multiple APs with precise location and/or orientation info
- Degenerate or fail in complex multipath scenarios
- Address only locations, but not motion parameters

Multipaths is still enemy!

RIM: RF-based Inertial Measurement

- Turns COTS WiFi radio into precise IMU that measures multiple motion parameters at centimeter accuracy:
 - Moving distance, Heading direction, Rotating angle
 - One single arbitrarily placed AP
 - COTS WiFi receiver

- One single arbitrarily placed AP, without knowing its location/orientation
- No additional infrastructure
- Not require large bandwidth or many phased antennas
- No need of a priori calibration
- Works anywhere the AP signal reaches, be

How to achieve all these features in one system?

Spatial-Temporal Virtual Antenna Retracing (STAR)

Multipath Profiles as Virtual Antennas!

$$\hat{v} = \frac{\Delta d}{\Delta t}$$

$$\hat{d} = \int_{t_0}^{t_k} \hat{v} dt$$
Moving distance

Aligned virtual antennas

STAR in 2D space

Line: 2 directions

Triangle: 6 directions

Quadrangle: 12 (6) directions

$$n*(m-1)/2$$
 lines

m*(m-1) directions

 $2\pi/(m*(m-1))$ orientation resolution

Identifying the aligned antenna pair will give the moving direction

STAR in 2D space

6-element hexagonal array:

- 12 different directions in total and thus an orientation resolution of 30°
- Build from two COTS WiFi radios without phase synchronization

Translational motion:

At most three aligned pairs

Rotational motion:

All adjacent pairs will be aligned

Super-Resolution Virtual Antenna Alignment

How to accurately pinpoint the space-time point that two virtual antennas are aligned with each other, at sub-centimeter resolution?

Time Reversal Resonating Strength

Virtual Massive Antennas

e.g., 1cm error = $\sim 50\%$ error in speed = 30° heading error = 22° rotation error

Time Reversal Resonating Strength (TRRS)

• Time-Reversal Focusing Effect: The received CSI, when combined with its time-reversed and conjugated counterpart, will add coherently at the intended location but incoherently at any unintended location, creating a spatial focusing effect

STAR Resolution

- The peak value as high as possible
- The peak width as narrow as possible
- The above two properties as robust as possible

$$\kappa(\mathbf{h}_1, \mathbf{h}_2) = \frac{\left(\max_i \left| (\mathbf{h}_1 * \mathbf{g}_2)[i] \right| \right)^2}{\langle \mathbf{h}_1, \mathbf{h}_1 \rangle \langle \mathbf{g}_2, \mathbf{g}_2 \rangle} \quad (CIR)$$

TRRS

$$\kappa(H_1, H_2) = \frac{|H_1^{H} H_2|^2}{\langle H_1, H_1 \rangle \langle H_2, H_2 \rangle}$$
 (CFR)

Virtual Massive Antennas

 Overcome distortions in TRRS: Leveraging consecutive multipath profiles as massive virtual antennas

$$\kappa\left(P_i(t_i), P_j(t_j)\right) = \frac{1}{V} \sum_{k=-V/2}^{V/2} \bar{\kappa}\left(H_i(t_i+k), H_j(t_j+k)\right)$$

TRRS Matrix

Normal retracing

Deviated retracing

Which antenna pair(s) is aligned and what is the alignment delay?

Focus on relative TRRS peaks within a window instead of the absolute values

Tracking Alignment Delay

Continuously track alignment delay via Dynamic Programming

$$S(\boldsymbol{q}_{i} \leadsto q_{jn}) = \max_{l \in [-W,W]} \left\{ S(\boldsymbol{q}_{i} \leadsto q_{kl}) + S(q_{kl} \leadsto q_{jn}) \right\}$$

$$S(q_{kl} \leadsto q_{jn}) = e_{kl} + \underbrace{e_{jn}} + \underbrace{\omega C(q_{kl},q_{jn})}_{\text{negative}}$$
 Peak value (negative) Cost function

$$n^{\star} = \underset{n \in [-W, W]}{\operatorname{arg\,max}} \left\{ S(\boldsymbol{q}_i \leadsto q_{jn}) \right\}$$

Detecting Aligned Pairs

 Detect the top two aligned pairs by TRRS peaks, continuity and smoothness of the peak trace, and the orientations they indicate

Putting It All Together

- Suppose the *i*th and *j*th antennas are detected to be aligned at time t, with a separation distance of Δd_{ij} and an alignment delay of $\Delta l_{ii}(t)$:
 - Moving distance: $d(t) = \int_0^t v(\tau) d\tau = \int_0^t \frac{\Delta d_{ij}}{\Delta l_{ij}(\tau)} d\tau$
 - Heading direction: $\theta = \begin{cases} antenna \ i \to antenna \ j, if \ \Delta l_{ij}(t) \ge 0 \\ antenna \ j \to antenna \ i, otherwise \end{cases}$
 - Rotating angle: $\Delta \theta = \begin{cases} \frac{R}{r}, & if \ rotation \ detected \\ 0, & otherwise \end{cases}$

Implementation

- Qualcomm Atheros 9k series chipset
- Running on Intel Galileo Gen2 board (built with an IMU)
- Antennas are spaced at a half wavelength distance (2.58 cm)
- Packet level synchronization (no phase sync required)

Evaluation

- A single AP, 7 different locations
- Both LOS and NLOS (40m away through multiple walls)
- 200Hz sampling rate on a 40MHz channel in the 5GHz band

Performance - Moving Distance

- On desktop: we move the array on a desk surface for traces around 1 m;
- On cart: we put the array on a cart and push it straight forward by more than 10 meters in different areas.

Performance - Heading Direction

- Traverse a 90° range with an increased step of 10°, together with each of their opposite directions
- >90% of heading errors are within 10°, with an overall average accuracy of 6.1°

Performance - Rotating Angle

- Median error of 30.1°, corresponding to an error of merely 1.3 cm in arc lengths (i.e., moving distances)
- Not as good as gyroscope (in short period)

Impacts of Different Factors

Potential Applications - Handwriting

Move the array by freely writing some letters on a desk surface

Potential Applications – Gesture Control

- Integrating RIM into a pointer-like unit
- One WiFi NIC with three small chip antennas arranged in an "L" shape.

(a) Gesture pattens

96.25% detection rate

(b) Detection rates

Potential Applications – Indoor Tracking

2D hexagonal array, resolving sideway movement for AGVs

1D linear array (3 antennas), obtaining direction by IMU, augmented with a particle filter (PF)

Demo: A WiFi Ruler with RIM

Measure the perimeter of a big round table

More interesting videos in our Demo session on Wednesday, August 21!

Discussions and Future Work

- Angle resolution: Current RIM only exploits discrete directions defined by the antenna array. On-going work has improved continuous directions with <10° error.
- Limitation of rotating angle: It remains open to estimate angular motion more accurately.
- 3D motion: Current RIM only addresses 2D motion. A 3D array or enhanced solutions is needed for 3D motion.
- Fusing inertial sensors: Leverage the complementary advantages of both systems, as demonstrated by our application case of indoor tracking.

Conclusion

- We present RIM, the first RF-based inertial measurement system that estimates centimeter-level moving distance, heading direction, and rotating angle using commercial WiFi radios
- RIM leverages rich multipaths as virtual antennas and contributes a novel super-resolution virtual antenna alignment algorithm.
- RIM works in large area with or without LOS using a single AP that is arbitrarily placed, opening up new directions and new applications of WiFi-based motion sensing

Thanks!

http://cswu.me/rim.html wucs32@gmail.com