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Abstract

On average, every 10 days a child dies from in-vehicle heat-
stroke. The life-threatening situation calls for an automatic
Child Presence Detection (CPD) solution to prevent these
tragedies. In this paper, we present VECARE, the first CPD
system that leverages existing in-car audio without any hard-
ware changes. To achieve so, we explore the fundamental
properties of acoustic reflection signals and develop a novel
paradigm of statistical acoustic sensing, which allows to de-
tect motion, track breathing, and estimate speed in a unified
model. Based on this, we build an accurate and robust CPD
system by introducing a set of techniques that overcome mul-
tiple challenges concerning sound interference and sensing
coverage. We implement VECARE using commodity speak-
ers and a single microphone and conduct experiments with
infant simulators and adults, as well as 15 young children
for the real-world in-car study. The results demonstrate that
VECARE achieves an average detection rate of 98.8% with a
false alarm rate of 2.1% for 15 children in various cars, boost-
ing the coverage by over 2.3× compared to state-of-the-art
and achieving whole-car detection with no blind spot.

1 Introduction

The ability of cars to sense, and save lives, inside a car remains
to be improved. One life-critical feature that is widely missing
is in-vehicle Child Presence Detection (CPD). Every year,
many children have been unintentionally and unknowingly
left in parked cars, or have got stuck into a car independently.
As the temperature inside a car can rise rapidly1, especially in
hot months, serious injuries or heatstroke deaths could happen
to children being left alone inside a car. It takes only a matter
of minutes before the heat can overwhelm a child’s ability to
regulate his/her internal temperature and cause injuries/deaths

This work was done when Yi Zhang was a Research Assistant at HKU.
1A car can heat up by 19 degrees in just 10 minutes. Even on a mild

day, the temperature in a parked car can rise to extremely dangerous and
potentially fatal levels for infants and toddlers. As reported, heatstroke can
occur even when outside temperatures are just 57◦F [3].

CPD

Child 

Detected!!!

Figure 1: Application scenario of VECARE. It detects an
unattended child using in-car audio and alert registered parties
for immediate responses and/or activate the air conditioner to
keep the child safe automatically.

as a child’s core temperatures increase three to five times
faster than an adult’s [3]. On average, around 40 children
dying from hot cars have been witnessed each year (about
one every 10 days), leading to over 900 pediatric vehicular
heatstroke (PVH) deaths on record since 1998 in the US
alone [50]. Despite remarkable advances in automobiles in
recent years, unfortunately, the cases of hot car deaths are only
increasing, with 2018 and 2019 being the record years of 54
and 53 deaths each [50]. All of these deaths could have been
prevented, if the car can detect the unattended child timely and
responsively alert concerned parties or take prompt actions to
keep the car cool and the child safe (as depicted in Fig. 1).

The widespread and tragic problem has driven govern-
ments and the auto industry to take initiatives to make CPD
a compulsion for future cars [49, 76], which fosters an ex-
pected market of $400 million by 2025 [27]. Existing so-
lutions include early systems using special sensors such as
optical/weight/pressure/ultrasonic sensors [4,20,21,54], cam-
eras [10,13,85], as well as recent efforts with Ultra-Wideband
(UWB) or millimeter-wave (mmWave) radars [26, 28, 66],
WiFi [45, 81], etc. These solutions, however, suffer from dif-
ferent limitations. Many works focus on adult passenger mon-
itoring, and cannot generalize well to infants and toddlers.
And the sensing coverage is mostly limited to only the seats
(for special seat sensors) or a certain Field-of-View (FoV) (for



cameras/UWB/mmWave radars), leading to degraded accu-
racy in Non-Line-Of-Sight (NLOS) scenarios and blind spots,
e.g., when a child is in a rear-facing car seat, blocked by a
seat, or on the car floor. More importantly, these techniques
require extra hardware that is not standard offerings in today’s
cars to be precisely installed2. This not only introduces ad-
ditional hardware and manufacturing costs, which are huge
considering more than 80 million new cars annually, but is
also backward-incompatible with most of the over one bil-
lion existing cars in the world. A truly pervasive system that
requires no extra hardware and works for all cars still lacks.

In this paper, we ask the following question: Can we build

an accurate and robust in-cabin monitoring system by using

only readily available in-car modules without any hardware

modifications? We present the design and implementation of
such a system, named VECARE, by leveraging in-car audio
systems, which are widely available in most, if not all, mod-
ern cars. As illustrated in Fig. 1, it operates by transmitting
sound signals from the speakers and analyzing their reflec-
tions recorded on a microphone, which have interacted with
the human body, if present. VECARE accurately and respon-
sively detects tiny motions and extremely weak breathing of
young children including newborns. It can reliably detect the
presence of a child in a car, achieving whole-car detection
with no blind spots. Importantly, it can be readily deployed in
existing and emerging car models, offering the best ubiquity
superior to the aforementioned other solutions.

Albeit acoustic sensing has been extensively studied, VE-
CARE introduces a novel paradigm of Statistical Acous-

tic Sensing (SAS). The mainstream practice in the litera-
ture mostly focuses on geometrical parameters, e.g., Time
of Flight (ToF) and Doppler Frequency Shift (DFS), of a
few multipath reflections around the range where a target
presents. Differently, inspired by recent advances in WiFi
sensing [79, 88, 89], we propose to analyze the statistical

characteristics of acoustic signals by leveraging all multipath
reflections, which can be all affected by the target and there-
fore can contribute to sensing if utilized properly. Towards
that end, we explore unseen properties of acoustic multipath
signals and accordingly develop a novel SAS model that un-
derpins a unified pipeline for detecting motion, estimating
breathing rates, and even measuring moving speeds. The pro-
posed SAS model truly embraces all the reflections and favors
complex multipath environments, while requiring only a sin-
gle microphone rather than a microphone array.

Based on the SAS model, we develop a set of techniques
that overcome multiple challenges in translating SAS into a
practical CPD system. First, effective acoustic channel estima-
tion is non-trivial, mainly because of ambient sound noises,
limited frequency band (up to 24kHz) on commodity de-
vices, and multiple concurrently-transmitting speakers. In
VECARE, we adopt Kasami Sequence, a pseudo-noise or-

2WiFi is becoming popular in modern cars, but still many do not have it.

thogonal sequence for channel measurement, which provides
resilience to environmental noises as well as orthogonality
for multi-speaker sensing. Second, acoustic sensing is known
to suffer from limited coverage, e.g., typically within 1-meter
range [53, 71], mainly because sound reflections off the hu-
man body are considerably weak. The problem is aggravated
for young children who have even weaker motion/breathing.
We boost the sensing coverage by statistically leveraging all
multipaths (time diversity), optimally combining multiple sub-
carriers (frequency diversity), and opportunistically exploiting
multiple speakers (space diversity), which ultimately allows
comprehensive detection in a car. Last, CPD is a time-critical
mission requiring fast response (e.g., detection within 10 sec-
onds [49]). We design an instantaneous motion/breathing
detector for CPD based on a time-domain approach, which
can detect child presence rapidly (motion in a few seconds
and breathing with a minimum delay slightly exceeding one
breathing cycle).

We prototype an end-to-end system using commodity off-
the-shelf (COTS) microphones and speakers, including car
speakers and microphones. We first use infant simulators and
recruit adults to systematically evaluate VECARE under vari-
ous conditions both in buildings and in cars. Then we conduct
a real-world study with 15 children, aged 0 to 6 except for one
10-year-old, for testing in various cars. Our results show that
VECARE achieves an overall detection rate of 98.8% with a
false alarm rate of 2.1%, using a single microphone. It can
detect motion accurately up to 5 m, and estimate breathing at
a distance of 4.5 m for an adult and 1.6 m for an infant, out-
performing the state-of-the-art by 2.3×. Using in-car audio
without any hardware changes, VECARE holds great potential
to be widely adopted for practical CPD.
Contributions: In summary, our goal is to enable a ubiqui-
tous solution to accurate and robust in-car CPD to prevent
PVH deaths. To this end, we make three key contributions to
delivering the first CPD system using accessible in-car audio:
(1) We introduce a novel statistical acoustic sensing model
that can detect motion, track breathing, and estimate speed
by leveraging all the reflections. (2) We present a pipeline of
techniques to detect motion, speed, and breathing based on
the SAS model accurately and robustly, with a significantly
enlarged coverage. (3) We design and implement a prototype
CPD system VECARE on COTS devices and conduct exten-
sive experiments in the real world with infant simulators and
young children. Not only is VECARE a promising solution to
the critical application of CPD, we also believe the proposed
SAS opens a new paradigm in acoustic sensing for various
applications in smart homes, healthcare, and beyond.

2 Design Space

Design Scope: Among over 900 deaths reported since 1998
[50], the primary circumstances resulting in PVH deaths in-
clude a caregiver forgetting a child in a vehicle (about 55% of



the cases), someone knowingly leaving a child in the vehicle
(∼20%, e.g., running a quick errand), and the child gaining
access to and getting stuck in the vehicle (about 25%). For
all of these circumstances, if the car can detect the child left
behind and remind/alert parents and caregivers promptly, im-
mediate actions can be taken, by caregivers or by the car, to
end these entirely preventable tragedies.

CPD systems are designed for this purpose. Typically, a
CPD system is expected to run, for a short period of time, after
the driver turns the engine off and locks the doors. Therefore,
we mainly focus on in-cabin monitoring of a parked, closed
car and do not consider a driving car. The system should then
detect a child presenting anywhere inside the car quickly (e.g.,
within 10s [49]), and take registered actions responsively, such
as alerting corresponding parties (e.g., car owners, parents,
caregivers) via horn alarms and/or messages, activating the
air conditioner automatically if the temperature goes high,
etc. Yet how a CPD system exactly reacts is not our focus in
this paper. For example, questions like how a CPD system
integrates into the car system and responds to child presence
(which depends on auto manufacturers, car owners, parents
and caregivers), and whether the system should be a built-in
component or a standalone module are out of our scope.

Why Acoustics? Although presence detection is not a new
topic, existing works mostly focus on adult subjects in build-
ings. In-car CPD is particularly challenging because it de-
mands a very high detection rate (any miss detection can lead
to a potential tragedy) and it requires such a high accuracy for
extremely tiny motion/breathing from an infant, which prior
methods cannot achieve. Different modalities can be used for
CPD, such as WiFi, UWB, mmWave, cameras, etc. In VE-
CARE, we choose audio modules mainly because of the best
ubiquity: Audio systems have been standard components in
modern cars, which are nowadays commonly equipped with
two, four, or more speakers plus one microphone. These speak-
ers are most commonly installed around the dashboard, the
front/back doors, and/or the rear deck, while the microphone
is usually installed on the dashboard, around the rear-view
mirror, or behind the steering wheel. They are placed in such
a way primarily for high sound quality, which also turns out
to support a good whole-car coverage for sensing.

While acoustic sensing is usually vulnerable to ambient
sounds, vehicles today are designed and manufactured to pro-
vide the necessary level of safety and to muffle as much road
noise as possible. Therefore, in the CPD application, the im-
pact from the noise outside a closed car is insignificant. On
the other hand, embedding sensing signals on the audible fre-
quency band may result in shrill noises that are intrusive to
human ears. Previous work has nicely modulated sensing sig-
nals into white noise [71] or on only the inaudible frequency
band [9] to solve the problem. In our case, VECARE can work
on either the full bandwidth (e.g., up to 24kHz) or only the
inaudible band (e.g., above 18kHz), depending on practical
choices. While existing works like BreathJunior [71] also

monitor infants’ vital signs, they are not suitable for in-car
CPD as they rely on a large microphone array that is unavail-
able in commercial cars. Overall, acoustic signals appear to be
an attractive choice for ubiquitous and practical in-car CPD,
yet it entails numerous challenges to build an accurate and
robust system using a single microphone.

3 Statistical Acoustic Sensing

We first present a novel statistical acoustic sensing paradigm.
Our model is inspired by the success of statistical approaches
in WiFi sensing [78, 79, 88, 89]. To put it briefly, this line of
work treats each multipath component as a scatterer and inves-
tigates the spatial-temporal statistical properties of WiFi Chan-
nel State Information (CSI), which have been shown to imply
important information such as motion [89], speed [79, 88], as
well as breathing [90]. These approaches show superiority
in complex environments and have been commercialized as
real-world products on commercial WiFi devices [24, 25, 39].
In below, we first present our new observations on multipath
propagation of acoustic signals, and then show that similar
statistical properties also hold for acoustics.
Acoustic Multipaths: Unlike WiFi signals, one can effec-
tively resolve multipath signals due to the high range resolu-
tion of acoustic signals. As a result, previous works mostly
only focus on reflections from the range of interest and seg-
ment others out. However, our measurements show that a
target at a certain range not only alters the reflection around
that range, but also distorts multipath signals arriving later to a
considerable extent. As shown in Fig. 2, while a human target
contributes the strongest reflection at the Channel Impulse
Response (CIR) taps corresponding to her/his range (i.e., 1.25
m), the CIR taps up to 7 m after that range are also altered
remarkably. In comparison, the CIR taps are mostly noises
in the empty case without human presence. Our key insight
is that all these multipath distortions, if aggregated properly,
can contribute useful information for sensing. The problem is,
how can we truly leverage these weak and noisy multipaths?
SAS Model: CSI, a.k.a Channel Frequency Response (CFR),
is the frequency-domain counterpart of CIR. CSI for an acous-
tic multipath channel of frequency f at time t is denoted as

H( f , t) =
R

∑
r=1

ar(t)exp(− j2π f τr(t)), (1)

where ar(t) and τr(t) are the complex amplitude and prop-
agation delay of the r-th reflection path, respectively, while
R denotes the total number of paths. From a rich-scattering
perspective, each reflection path can be treated as a scatterer
that scatters the incoming energy back to the receiver (i.e.,
microphone) [22, 33, 89]. Thus, we have

H( f , t) = ∑
i∈RD

Hi( f , t)+ ∑
j∈RS

H j( f , t)+N( f , t), (2)
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Figure 2: CIR measurements with and without human motion.
The large CIR values at the motion range are truncated for
the sake of visualization.

where Hi( f , t) denotes the component contributed by the i-
th scatterer, N( f , t) is the noise term with variance σ2

N , and
RS and RD denote the set of static and dynamic scatterers,
respectively. Assuming all scatterers are statistically inde-
pendent of each other, each with the same variance σ2

i ( f )
and approximately zero means, it has been established in the
context of WiFi signals [22, 79, 88], that the Autocorrelation
Function (ACF) of H( f , t) obeys the 0th-order Bessel func-
tion of the first kind. That is, denoting ρi( f ,τ) as the ACF of
Hi( f , t) with time lag τ, we have ρi( f ,τ) = J0(kviτ), where
J0(x) =

1
2π

∫ 2π
0 exp(− jxcos(θ))dθ, vi is the moving speed of

Hi( f , t), and k is the wavenumber. Suppose there is one single
moving target, and thus all dynamic scatterers have approxi-
mately the same speed v, vi ≈ v,∀i ∈ RD. This assumption is
realistic because, for human subjects, the torso scatterers dom-
inate others and have a similar speed. Then the ACF ρ( f ,τ)
of H( f , t) can be associated with the target’s moving speed v

as follows [79, 88]: For τ ̸= 0,

ρ( f ,τ) =
∑i∈RD

2πσ2
i ( f )+σ2

N( f )δ(τ)

∑i∈RD
2πσ2

i ( f )+σ2
N( f )

J0(kvτ)

≜ g( f )J0(kvτ),

(3)

where δ(·) is the Dirac’s delta function and g( f ) is defined
as the channel gain of H( f , t). Eq. (3) bridges the ACF of
the CSI with the target’s moving speed. In practice, we can
calculate the sample ACF, ρ̃( f ,τ) = ρ( f ,τ)+n( f ,τ), from a
time series of CSI measurements with a noise term n( f ,τ).

While statistical approaches in WiFi sensing [79, 88–90]
have demonstrated success for practical solutions and com-
mercialized products [25,39,60,67], they have not been previ-
ously explored in acoustic sensing. VECARE brings statistical
sensing approaches to acoustic sensing. In the following, we
perform real-world measurements to demonstrate the proper-
ties of acoustic CSI and explain how to derive motion, speed,
and breathing based on the SAS model.

1) Detecting Motion: Similar to the motion statistic de-
fined in [89] for WiFi CSI, we find that the defined chan-
nel gain g( f ) in Eq. (3) is a sensitive and robust indica-
tor for acoustic motion detection. From Eq. (3), we have
g( f ) = limτ→0 ρ( f ,τ) since limτ→0 J0(kvτ) = 1. Hence, given
a sufficient CSI sampling rate Fs, we can approximate g( f )
as the value of the first tap of the ACF, i.e.,

g( f ) = ρ̃( f ,τ = 1/Fs). (4)

(a) The ACF matrix. Each column indicates an ACF.
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Figure 3: Human motion and breathing in a bedroom.

If any motion presents, the value of g( f ) is greater than
zero; otherwise g( f )→ 0. Fig. 3 shows an example of g( f ) in
the case of human presence and absence, respectively. As seen,
there is a clear gap between the empty level and the values
for motion. Additionally, g( f ) exhibits larger values when
the motion is stronger/closer, implying that it also indicates
motion strengths.

2) Tracking Breathing: ACF itself is a time-domain ap-
proach to identifying periodic signals. Therefore, we can also
detect breathing signals from the ACF, which are periodic
signals induced by repeated chest movements. If a breathing
signal is captured by CSI, the ACF will observe a promi-
nent peak at the time lag τb corresponding to the cycle time,
as in Fig. 3(a). Thus, by finding time lags of these peaks
over time, we can track one’s breathing rates as 60/τb BPM
(breath per minute). Note that as a time-domain approach,
ACF in principle is faster for breathing estimation compared
to spectrum-based approaches, which usually require a much
longer window to yield better frequency resolution.

3) Estimating Speed: As indicated by Eq. (3), the ACF of
CSI is a function of speed v, which underpins a statistical
approach entirely different from the Doppler effect for speed
estimation [88]. Specifically, as shown in Fig. 4b, the shape
of the ACF ρ( f ,τ) resembles the Bessel function J0(x) with
x = kvτ, meaning that we can estimate the speed by aligning
ρ( f ,τ) with J0(x). Assuming x0 is the constant value corre-
sponding to the first peak of J0(x), then the moving speed

v can be calculated as [79, 88]: v̂ = x0
kτs

= x0λ( f )
2πτs

, where τs

is the time lag corresponding to the first local peak of the
ACF ρ( f ,τ) and λ( f ) is the wavelength of subcarrier f . Fig.
4 illustrates an example of speed estimation with the setup
in Fig. 8(c), which shows that the ACF reacts to the moving
speed faithfully as the above equation implies.

Remark: As seen, a peak in the ACF can either indicate
a speed signal or a periodic signal. However, we notice that
the peak locations for breathing (e.g., 1-5s for breathing rates
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Figure 4: Speed estimation. A plate moves along a track
programmed with different speeds (frequency @ 10 kHz).

60-12 BPM) are usually of magnitude longer than those for
speed (e.g., <0.5s for 0.5 m/s using 10 kHz sound, and the
faster the speed, the smaller the delay), a sufficient difference
to determine whether to estimate breathing or speed. We do
not involve speed in the current VECARE for CPD as motion
and breathing will be sufficient. Yet we still present a brief
description here, with an analysis of a few more issues in
Appendix A.1, to show a unique approach offered by the SAS
model. We keep the exploration of the full potential of SAS
speed estimation for future work.

4 VECARE Design

Translating the proposed SAS model into a practical CPD
system on commodity speakers and microphones still entails
multiple challenges. In this section, we overcome these prac-
tical challenges and present the design of VECARE.

4.1 Acoustic Channel Estimation

The proposed SAS model leverages acoustic CSI, which de-
mands effective channel estimation. Several unique character-
istics of sound waves make it particularly challenging. First,
the sound wave speed is orders of magnitude slower than
that of light and EM waves, which imposes limitations on
the max possible CSI sampling rate of the acoustic channel.
For example, given the in-air sound speed of around 343 m/s,
the propagation delay of a path of 7 meters in length will
be greater than 20 ms, requiring a minimum channel mea-
surement internal larger than 20 ms to avoid signal mixture.
Second, acoustic sensing is vulnerable to environmental sound
interference, especially when it is limited to a frequency band
under 24 kHz on commodity devices. Ambient interference
like the human voice, music, and natural sounds, can smear
channel measurements for certain frequency bands. Moreover,
concurrent sensing signals transmitted on multiple speakers,
if used, may also interfere with each other.

In VECARE, we investigate Pseudo-Noise (PN) sequence
[57] for CIR measurements. PN sequence is a set of noise-
like signals and can be effectively distinguished from both a
time-shifted version of itself (a.k.a, excellent auto-correlation
properties) and every other signal in the set (a.k.a, excellent
cross-correlation properties), which have been used in spread-
spectrum communications, radar sensing, etc [52]. Among

different types of PN sequences such as m-sequence [58], Go-
lay sequence [64], GSM training sequence [86], and Zadoff-
Chu (ZC) [63], we choose Kasami sequence [31] for CSI
estimation because of its superior properties of orthogonality
and noise tolerance. Fig. 5a shows the auto-correlation and
cross-correlation of a pair of example Kasami sequences with
period 26 −1. The auto-correlation produces an impulse-like
signal with minor side lobes, while the cross-correlation only
produces minor values that are much smaller than the impulse
of auto-correlation. Note that our approach is not limited to
a particular channel estimation technique, but can work with
any approach, including the widely used FMCW, that provides
effective CSI.
CIR estimation with Kasami sequence: Fig. 6 shows the
channel estimation process in VECARE, with two speakers as
an example. We generate two orthogonal Kasami sequences
s1 and s2 with the same length and periodically transmit them
on both speakers simultaneously. The transmitted sequences
undergo different time delays and attenuation before being
captured by the microphone. On the receiver side, we corre-
late the microphone recordings with s1 and s2 separately to
get CIR streams of the two channels, and slice them into seg-
ments with the same length as s1 and s2, resulting in the CIR
estimates h1(t) and h2(t). We can then convert h1(t) and h2(t)
into the frequency domain by performing Fourier transform
and obtaining the CSI H1( f , t) and H2( f , t).

Since a correlation operation is equivalent to a conjugate
multiplication in the frequency domain, the measured CSI
H̃( f ) using Kasami sequence can be represented as

H̃( f ) = [S( f ) ·H( f )+N( f )] ·S∗( f )

= ∥S( f )∥2 ·H( f )+N( f ) ·S∗( f ),
(5)

where H( f ) denotes the ideal CSI, and S( f ) and N( f ) are the
frequency-domain representations of Kasami sequence and
sound noises respectively. S( f ) is a wideband signal spanning
over the whole spectrum, and S∗( f ) is its conjugate. The term
∥S( f )∥2 ·H( f ) approximates to a scaled version of H( f ). An
example of the measured CIR is shown in Fig. 2.

We generate Pulse Coded Modulation (PCM) samples from
the Kasami sequence and play them on the speaker without
an extra modulation process. Several previous works have
exploited more complicated signal modulation techniques
to improve measurement performance including Orthogonal
Frequency-Division Multiplexing (OFDM) [48] and BPSK
[86], which is not necessary for VECARE.

Audibility and Interference: There are two issues with
the above channel estimation process. First, the Kasami se-
quences composed of 1’s and -1’s with sharp transitions in
between can be intrusive to human ears. Second, by trans-
forming CIR, the obtained CSI spans the full spectrum, which
might be polluted by the ambient sound noises, especially on
the audible frequency band. To circumvent these problems,
we apply a high-pass filter (HPF) on both the transmitted
and received signals. The passband can be set flexibly, and
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VECARE can work reliably even with only the inaudible
pseudo-ultrasound band, e.g., above 18kHz. Here we use an
empirical passband of 10 kHz as an example for illustration
and will evaluate difference choices extensively in §6.

Transmitter Filtering: When we apply the filter on the
transmitter side, as shown in Fig. 5c, the binary values on
the time domain signal are softened, and the output sound
contains fewer intrusive bursts. The major concern is whether
this filter operation breaks the auto-correlation and cross-
correlation properties of Kasami sequences or not. To validate,
we plot the auto-correlation and cross-correlation between
the original and filtered Kasami sequence in Fig. 5b. It can
be seen that, after applying the filter, the auto-correlation still
observes an impulse (with a decrease in SNR) while the cross-
correlation approximates the noise.

Receiver Filtering: On the receiver side, the term N( f ) ·
S∗( f ) in Eq. 5 is eliminated by high-pass filtering. This is
because typical daily sound interference, such as traffic and
human voice, mostly occurs in the frequency band below
10 kHz. Fig. 5d shows the spectrum of traffic noise and the
measured CSI after applying the HPF. As seen, the noise
is successfully removed. Meanwhile, we are left with fewer
subcarriers for sensing because of the filtering, motivating us
to maximize the sensing signals (§4.2).

Resilience to asynchronization: The speakers and micro-
phones are connected to the same controller in our prototype
and in cars as well. Due to hardware imperfections and soft-
ware latency, however, they are not perfectly synchronized,
which makes it difficult to measure accurate channel response.
Fortunately, synchronization errors only introduce phase off-
sets in CSI, which does not affect VECARE because CSI is
measured consecutively without blanks in between and we
only use the amplitude. We will experimentally verify this in
§6 and show that VECARE even works with separate speaker
and microphone, while providing proof in Appendix A.2.

4.2 Sensing Signal Enhancement

Sound reflection off human bodies is considerably weak, a ma-
jor reason confining the coverage of human-centric acoustic
sensing [71, 74]. The problem is aggravated when the target
is an infant/toddler in CPD applications. Our SAS model
utilizes all multipaths for better coverage. We now present
an effective technique to exploit subcarrier diversity which
further boosts the sensing signals, particularly for breathing.

Subcarrier diversity is attributed to frequency selective fad-
ing, a well-known phenomenon in wireless communications.
Fig. 7 demonstrates a breathing example, with the calculated
ACF matrix on different subcarriers in Fig. 7a and the raw
amplitude of good subcarriers (manually selected) in Fig. 7b.
Some subcarriers capture dominant breathing signals, while
others merely observe noises, even in such an example with
strong breathing signals. We also notice that, because of the
complex multipath propagation, the most sensitive subcarriers
can vary over time randomly. Therefore, it is critical to dy-
namically find the best subsets of subcarriers and effectively
combine them to maximize the signal SNR.

Like in WiFi sensing works [79, 90], we employ Maximal
Ratio Combining (MRC) [6], a classical diversity combin-
ing method in wireless communications which optimizes the
receiving SNR, to combine multiple subcarriers optimally.
Since the noise terms on different subcarriers are statistically
independent, we can maximize the signal SNR by MRC as

ρ̂(τ) = ∑
f∈F

w( f )ρ̃( f ,τ), (6)

where ρ̂(τ) is the combined ACF, w( f ) denotes the normal-
ized weight for combining subcarrier f (i.e., ∑ f∈F w( f ) = 1),
and F is the set of all subcarriers. The optimal weight w( f )
should be linearly proportional to the gain on each subcarrier.
Following [90], we adopt the normalized g( f ), defined in Eq.
(4), as the weight w( f ) in VECARE. Note that, some intuitive
criteria commonly used like mean/variance of CSI amplitude
cannot serve as the optimal weights for MRC, as they are not
linearly proportional to the gain g( f ) and subcarriers with
higher amplitude means/variances do not necessarily better
capture the sensing signals, as shown by Fig. 7a.
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carriers. (c) ACF on subcarriers and after MRC.

We can combine multiple subcarriers here because, by tak-
ing the ACF, the sensing signals (either breathing or speed) are
synchronized across different subcarriers (Fig. 7c). It cannot
be done directly on the raw amplitude due to the considerable
phase offsets of breathing/speed signals on different subcarri-
ers, as demonstrated by Fig. 7b. In case multiple speakers are
available, the subcarriers on different speakers can be com-
bined similarly, and again, asynchronization among different
speakers is not an issue. By combining them, we can further
boost the SNR and extend the sensing coverage.

4.3 Child Presence Detection

VECARE combines motion and breathing detection for CPD.
Motion detection: It is straightforward to detect motion. We
first average the gains g( f ) across all subcarriers and obtain
ḡ = 1

|F | ∑ f∈F g( f ). Then given a preset motion threshold ε,

the system detects motion at any given time t if ḡ(t)> ε; oth-
erwise no motion presents. We use equally averaged ḡ instead
of using MRC because the averaged values across all subcar-
riers with equal gains will approximate zero in absence of
motion, allowing us to find a generic threshold ε for different
environments and cars.
Breathing Detection: To estimate the breathing rate, we first
need to find whether there exists a dominant peak in the en-
hanced sensing signal ρ̂(τ). To achieve so, we adopt similar
criteria in [90] for peak finding. Basically, we first examine
the peak prominence, width, and amplitude to identify poten-
tial peaks. Then we further check the peak location to sift out
those beyond the typical range of human breathing rates, e.g.,
10-60 BPM. We also compare the motion level ḡ against the
peak value as there will be unlikely breathing if the motion
level is way larger than the peak value. Once we find the

peaks corresponding to breathing, we will estimate the peak
location τb and accordingly derive the breathing rate.
Real-time CPD: In real-time, we employ a sliding window
on the continuous CSI to calculate the ACF. We employ a
shorter window of CSI (e.g., 1s) for calculating the ACF for
motion detection to make it more responsive while saving
computation. While for breathing, a minimum window larger
than a typical breathing cycle (e.g., 6s, which can be shorter
for children who usually have higher breathing rates) is de-
sired. As motion is more common and the computation is
more efficient, we will only further perform breathing estima-
tion when no motion can be detected. Note that the system
can output detection decisions as fast as every CSI sample,
or at a predefined lower rate, e.g., every 1 second, to save
energy. Once we have the time series of motion/breathing
decisions, we check them within a certain window, e.g., 5s,
and child presence is claimed if there is a certain amount of
motion/breathing detection, e.g., >30% of the window.

5 Implementation

Hardware: We implement VECARE using a programming
audio prototype, which consists of a MiniDSP UMA-8-
SP USB microphone array [44] with 7 built-in Knowles
SPH1668LM4H microphones (we use only one of them)
and PUI Audio AS07104PO-R speakers [5] connected to the
MiniDSP board via cables. As in Fig. 8(g), we also evaluate
the performance on a variety of commodity devices used in
consumer electronics and cars, including JBL Stage1 621 car
speaker [29] and Linhuipad car microphone [38], JBL Clip
4 speaker, Sony SRS-XB23 speaker, Razer Seiren Mini Mic,
and speakers and microphones on Macbook and iPhone, etc.
Again, we always use only one single microphone throughout
our experiments, even if more are available. We connect this
prototype to either a computer or Raspberry PI 3 Model B+.
Software: We implement signal generation and transmission
as well as all our algorithms using MATLAB mainly for
benchmark analysis. We also build an end-to-end prototype
of our system running in real-time using Python3.9, which
can run on embedded devices (Raspberry PI in our case).
Kasami Sequence: A longer period of Kasami Sequence
allows higher SNR for channel estimation, which, however,
creates an immediate conflict with sampling rates. To trade-
off, we use a sequence of period 210 −1 modulated into 0.02
s, which allows a desired sampling rate of 50 Hz to use in
VECARE. By default, we use 3 seconds of CSI for motion
calculation and use 8 seconds for breathing rate estimation.
Handling Sharp Interference: By applying a high-pass filter,
we successfully get rid of most of the daily environmental
noises. However, if there are sharp and short impulse-like
noises (e.g., horn honk/beep), the impacts may go above 10
kHz and cause false motion detection. We notice that these
kinds of sharp noises will impose a sudden change in the
CSI amplitudes, which translates into a special ACF pattern,



which linearly decreases first and then linearly increases (See
Appendix A.3 for more details). Therefore, we design a detec-
tor to identify this linear decrease-then-increase pattern and
skip CPD during the interfered period. By doing so, VECARE

becomes immune to sharp noise like horn beep, an important
feature making it more practical. Although this would reduce
the effective protection time (the system is not working in
presence of such noises), we argue the impact is minimal
because these noises are usually short (∼1s) while VECARE

detects so rapidly that it can find a period for detection.

6 Evaluation

6.1 Experimental Setup

We conduct experiments both in office environments and in
cars, as Fig. 8 illustrates, which mainly consist of three parts:
1) Indoor experiments with adults to evaluate the performance
in large space against various parameters. 2) Indoor and in-car
experiments with infant simulators. Our evaluation involves
two infant simulators. One is Laerdal SimNewB (Fig. 8(b)), a
high-end model (retail price around $30,000) offered by the
clinical facility in our university’s medical school, which is
co-created by the American Academy of Pediatrics and allows
to set the breathing rate as well as move various body parts.
The second one comes with a breathing motor and does not
support body movements. 3) Real-world in-car experiments
with children. We recruit 15 young children and perform CPD
in 7 different cars including sedan and SUV.

Ground truth for adult breathing is measured by Plux piezo-
electric Respiration (PZT) sensor [7]. Infant simulators have
a preset fixed breathing rate. We did not record the ground
truth breathing rate of children participants as it is difficult
to have their cooperation. Motion and presence ground truths
are manually labelled. This work does not raise any ethical
issues and has been approved by our university’s IRB. No
sensitive data like personal identifiers were collected.

To show our performance under extreme responsiveness
constraints, by default we use a 2-second window for the
decision below. A higher detection rate is expected if a longer
decision window is applied. Also, we use only one speaker for
evaluation unless otherwise specified. Using more speakers is
expected to provide larger coverage. We mainly use detection
rate (DR) and false alarm rate (FAR) as the evaluation metrics
for motion, breathing, and overall presence detection, while
we also evaluate the mean absolute breathing rate error.

6.2 Indoor Performance

We first evaluate with comprehensive indoor experiments to
validate motion detection and breathing estimation.
Motion Detection: We first evaluate the motion detection
performance in a 7m×5m conference room. We set up one
microphone and one speaker in the corner. The room is in an

(g)
Sony speaker

Macbook

iPhone

Razer mic

JBL Clip 4

miniDSPPUI

JBL Stage1 621

Car speaker

Linhuipad
car mic

Figure 8: Experimental setups

office building, with constant noise from the central fan and
occasional footstep sounds when people pass by the outside
corridor. An adult is asked to sit in a chair, at various distances
from 1m to 5 m, and only move his one hand slowly to mimic
the tiny motion of a child. We also test with the speaker facing
different angles with respect to the subject. As shown in Fig. 9,
VECARE achieves an average detection rate of 98.1%, which
maintains 94.1% even when the user is 4∼5 m away from the
speaker and microphone, while the false alarm rate is only
1.1%. The performance degrades slightly when the subject
is at a distance and at an angle of 60◦. Note that the motion
detection rate is almost 100% when the user is within 3.5 m,
a sufficient distance to cover a typical car.
Breath Estimation: Now we evaluate the breathing estima-
tion performance in the same environment. First, we also
test with an adult subject at different distances, sitting still
in a chair. As shown in Fig. 10, we achieve a mean absolute
error of 0.88 BPM within the distance of 3 m, including all
orientations. More importantly, VECARE can detect breath-
ing rate at a range as far as 4.5 m, with a slight increase in
breathing rate error. We also evaluate the case when there is
no Line-Of-Signt (LOS) between the speaker and the subject,
as well as the case when the user wears a thick down jacket.
As portrayed in Fig. 11, even when a user is wearing a thick
coat, VECARE can still pick up the breathing rate at distance
up to 4 m. When the speaker is blocked, the maximum range
of breathing estimation decreases to 2.5 m, still more than
enough to cover an entire car. Note that the accuracy under oc-
clusion is not necessarily lower than that for LOS cases since
VECARE embraces all multipath reflections to significantly
enhance the NLOS scenarios, which may experience richer
multipath effects.
Evaluation with SimNewB: Now we carry out a feasibility
study with the SimNewB newborn simulator in a clinical facil-
ity, which features tens of beds and has continuous machinery
and HVAC noises. The experimental setup is illustrated in
Fig. 8(a). During the tests, the laboratory technician randomly
set the breathing rate of the newborn simulator. As shown in
Fig. 13, VECARE can detect the newborn simulator’s very
weak breathing reliably, achieving an average detection rate
of 87.8% with a mean error of 3.43 BPM, which decreases
to 78.0% with an increased mean error of 8.6 BPM when
the newborn is covered with a blanket. Note that we didn’t
exhaust various breathing rates due to limited access to the fa-
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cility and SimNewB during the pandemic time, yet we believe
the results already show the capability to detect a newborn’s
breathing at a distance. We will further study the impact of
breathing rates later. In another test case, we configure the
neonatal simulator to move her forearms, for which we detect
the motion for 100%.
Speed Estimation: We also conduct a preliminary evaluation
of our speed estimation by moving a plate back and forth at
speeds from 15 cm/s to 25 cm/s along a 1.8m long straight
programming track, as in Fig. 8(c). As shown in Fig. 12, VE-
CARE achieves a considerable 80%ile accuracy of 5 cm/s.
Errors mainly occur around the turning points when the plate
slows to stop and starts moving again. We believe the re-
sults are encouraging and plan to further investigate statistical
acoustic speed estimation for other applications in the future.

6.3 Real-World CPD Study

We conduct a real-world study with young children in differ-
ent cars and parking scenarios, such as parking lots, roadside
parking, garage, etc. For each child, we test different loca-
tions, with either forward-facing or rear-facing car seats as
regulated. For older children who can sit/crawl independently,
we also test seats without the baby car seat. All the children
wear their regular winter coats. We test motion (awake) cases
for every child and evaluate breathing for children who are
able to get asleep (or stay very quiet) during the test. The data
collection for each child lasts about 30-60 minutes. During
tests, the car is parked and locked with windows closed, the
typical scenario that hot-car deaths may occur. There are cars
parking around and/or passing by, and parents and our experi-
menters talking/standing/walking around the car. There are
frequent traffic noises during most of the tests, done in central
downtown Hong Kong. In total, we have 15 children (aged
7 months, 12 months, 18 months, 2 (2×), 3 (4×), 4 (2×), 5
(3×), and 10 years old, respectively) tested in 7 different cars,
including Lexus LS430, BMW 330, Mercedes-Benz C200,
Mercedes-Benz S320, Tesla Model 3, Honda Jazz, Nissan
Serena. We use one or two speakers for the real-world study,
considering not all cars have four or more, and always use
one single microphone. In most cases, the LOS condition is
occluded, provided that the devices are installed in the front
row while the kids are seated in the back. Example setups are
shown in Fig. 8(d) and (e).

We mainly focus on the overall presence detection rate
for this CPD test. Fig. 14 shows that VECARE achieves an

average detection rate of 98.8% with an average false alarm
rate of 2.1% for all age groups of children. As expected, the
detection rate for infants (one 7-month-old and one 12-month-
old in our experiments) is relatively lower than older kids,
but is still around 90%. The high performance is consistently
achieved across different cars, varying from 95% to 100%
with marginal differences, as portrayed in Fig. 15. The FARs
in Fig. 14 vary slightly because different kids are tested in
different cars that have different enclosure materials and in-
car noise levels. False negatives are most likely to occur when
there is a lack of awake motion and the infant’s breathing is
extremely weak.

Furthermore, we analyze the performance at different in-car
locations. As shown in Fig. 16, we group the results based on
where the child seats, i.e., driver seat (L-F), passenger seat (L-
R), two back seats (L-B and R-B), as well as the case when the
child is on the back row floor (B-G). As seen, VECARE main-
tains a consistently high detection rate and low false alarm
rate across different locations. Overall, the results demonstrate
VECARE’s remarkable performance in real-world scenarios,
promising its potential for practical adoption.

To further understand the detection coverage in a car, we
use a small toy car, as shown in Fig. 8(f), to simulate tiny
motions at nine different on-seat and on-floor locations. Two
speakers are installed on the left and right front doors, respec-
tively. As depicted in Fig. 17(a), VECARE achieves a 100%
detection rate for all the 9 testing locations, using either two
speakers or only one single speaker on the left or the right.

Long-term Study: Besides the high accuracy, it is also crit-
ical to study false alarms, especially over a long period in
diverse noisy environments like busy streets, noisy garages,
etc. We first note that the above real-world experiments were
conducted in noisy urban areas (including noisy garages, busy
streets, parking lots next to highways, etc) in downtown Hong
Kong in the presence of cars, sirens, pedestrians, etc. To fur-
ther understand the performance in different environments,
we carry out a relatively long-term evaluation in the busy
Beijing City. We park the car, without kids inside, in a busy
garage and a crowded street for about 10 hours, respectively.
We report a false alarm if motion is detected for over 10%
of the time for a sliding window of 2s. Our results show that
VECARE observes a false alarm rate of 0.12% in the garage
and 0.28% for the roadside parking case. In practice, a CPD
system may not need to run for a long time, but perhaps only
for a few minutes after the car is parked and locked, which
will further reduce the chance of observing false alarms.
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System Latency: As a time-critical task, we now analyze the
detection latency of VECARE. To do so, we evaluate the delay
of the first decision for each test. We use a 3s window for ACF
calculation for motion and an 8s window for breathing, and
then use another 2s window for presence detection. Hence,
the minimum delay will be 5s if motion is detected and 10s
if there is no motion but breathing. With this configuration,
the results show that VECARE can output the first detection
within 5.7s for 81.9% of the time, 11.2s for 95.2%, and 15.2s
for 98.8%. The minimum delays and thus the overall latency
can be reduced by using a shorter window (e.g., 1s) for motion
detection, the most common case for CPD.

6.4 Comparative Study

Baseline Comparison: We compare VECARE with the state-
of-the-art approach BreathJunior [71], the closest to our work
which successfully uses white noise for infant breathing mon-
itoring. We implement BreathJunior and perform comparison
experiments using an infant simulator. The results demon-
strate that VECARE outperforms BreathJunior in both ac-
curacy and coverage. As shown in Fig. 18, the maximum
distance BreathJunior achieved is 70 cm (with a considerable
error of 8 BPM), while VECARE goes to 1.6 meters under
the same condition, which is 2.3× improvement. In addition,
while BreathJunior is accurate within 0.5 m, the breathing
estimation error quickly increases at a distance of 70 cm. In
comparison, VECARE maintains a breathing rate error be-
low 2 BPM at a distance of 90 cm, smaller than the error
BreathJunior experiences at 60 cm.
Channel Estimation Methods: As said, VECARE can work
with any channel estimation methods that output CIR. We
now compare the performance of using Kasami Sequence
against using different CIR estimation methods, including
chirp signals (FMCW) [15], Golay Sequence [64], MLS [59],
Gold Sequence [19]. As shown in Fig. 19, while all these
methods produce a high detection rate above 90%, Kasami
Sequence demonstrates its superior performance with the
lowest breathing rate error and the highest detection rate.
Device Diversity: We now examine VECARE’s performance
on different devices. We are most interested in how it works on
commodity car speakers and microphones. We thus evaluate
it using JBL Stage1 621 car speaker and Linhuipad car micro-
phone, both adopted in existing automobile audio systems. As
shown in Fig. 20, VECARE maintains high performance and
large coverage. We further test motion detection at 2m on var-
ious speaker/microphone combinations as summarized in Fig.
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21, which indeed show device diversity yet good performance
retains in most cases.

6.5 Benchmark Study

In this section, we evaluate the impacts of various factors and
validate the robustness of VECARE. For more controllable
data collection, we use the infant simulator instead of real
babies for this study, and focus more on breathing estimation.
Background Interference Type: We first study the impact
of background sound interference of different types, includ-
ing human voices, traffic noise, rain sound, wind sound, hail-
stone sound, and music. To better control the experiments, we
download sound files of these noises and play them through a
loudspeaker around 50 dB next to the VECARE system. As
shown in Fig. 22, VECARE maintains high accuracy regard-
less of different types of natural sound interference, with only
marginal differences among them. This has also been partly
verified in our real-world testing in §6.3 where we tested
under real environments with all different ambient noises.
Background Interference Level: We also evaluate the per-
formance under various background noise levels. We mainly
focus on traffic noise and human voices for this test. We play
sound files of noise through a loudspeaker at various powers
and distances and record the actual sound level received at the

microphone. As shown in Fig. 23, the BPM error increases
with higher surrounding noises, especially over 50 dB level.
Transmitter Sound Level: The transmitting power of the
speaker can affect performance. To verify this, we vary the
transmitted sound from 46 dB to 53 dB and evaluate the
breathing estimation error accordingly. As seen in Fig. 24,
the breathing rate error quickly drops from about 7 BPM to
below 2 BPM when the sound level exceeds 49 dB. Sensing
sound at this level is perceived acceptable, according to our
observations of the response of children participants and their
parents’ feedback, and users outside the car can barely hear
the sound. Also, note that previous works [71] use higher
sound levels (reportedly 56 dB [71] and 75 dB [70]) than
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Figure 21: Motion detection on
various devices.
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Figure 24: Impact of transmit-
ting sound level.

VECARE. Nevertheless, a higher sound level is more favored
in VECARE as a relatively high sound level could benefit CPD
applications since it promises a better chance to wake up a
sleeping baby for more reliable detection via awake motion.
As research [16, 51] reports that a sound level higher than 75
dB will disturb the infants, we set the default sound level as
50 dB. Based on our real-world experiments with children,
such a sound level appears to be tolerable to kids including
infants and toddlers: We received no cases to complain about
the sound intrusiveness and annoyance.

Frequency Bandwidth: We use the band above 10 kHz by
default in our experiments, which may still be intrusive to
human ears. We now study the performance with narrower
and higher frequency bands. To do so, we adapt the passband
of the high-pass filter from 10 kHz to 22 kHz with a 2 kHz
step. Fig. 25 shows that VECARE retains a good performance
until the passband exceeds 20 kHz. Larger bandwidths allow
better performance, while VECARE still performs well using
18-24 kHz, the commonly used inaudible band in the literature.
Commodity devices like Google Nest start to support acoustic
frequencies up to 30 kHz [70], which we believe will become
more common in the future. Such devices allow a sufficiently
large and truly inaudible band across the age spectrum for
non-intrusive acoustic sensing.

Impact of Temperature: As sound speed depends on tem-
perature, we are curious how VECARE works under high
temperatures. To do so, we heat up the surrounding air to
about 120◦F and then let it naturally cool down in a warm
room of about 70◦F. We keep the system running during the
process and show the breathing estimation results in Fig. 26.
As seen, VECARE failed to work when the devices overheat,
but resumes excellent performance when they slightly cool
down (after 30 seconds). We argue that a CPD system is ex-
pected to work before rather than after the car has heated up,
as intervention actions are most effective right after the car
is parked and locked. Therefore, we believe VECARE’s CPD
effectiveness will not be affected even though its performance
degrades under overly high temperatures.

Multiple Speakers: Multiple speakers, if available, can fur-
ther increase the sensing coverage. We present a case study
with two speakers in a meeting room, where an adult sits in a
chair moving one hand. As portrayed in Fig. 17(b), while the
coverage with a single speaker is already good, by adding one
speaker, we achieve a 100% motion detection rate through
the 6m×4m area. We didn’t continue with more speakers as
the system already covers the entire room using two.
Synchronization Errors: We manually introduce large syn-
chronization errors to show that VECARE is resilient to phase
offsets. Particularly, we shift the starting point of the received
signals by an amount of time ranging from 0 to 1 second
with a step of 0.1 s. As shown in Fig. 27, VECARE maintains
similar accuracy without being affected by the time offsets,
which confirms our theoretical analysis.
Breath Intensity: Infants and toddlers usually have higher
breathing rates than adults. We evaluate the performance of
VECARE with respect to a range of breathing rates from 30
BPM to 60 BPM. We fix the breathing rate for each run by
controlling the motor of our infant simulator. The results show
insignificant differences for various breathing rates.
System Overhead: We benchmark the system overhead on a
desktop (Intel i7-11700 @ 4.9GHz CPU), a MacBook Air M1,
and a Raspberry Pi 3 Model B+, on which VECARE use 0.52s,
0.73s, and 3.97s respectively to process 10s of the data stream.
The results show that VECARE can run in real-time on embed-
ded devices, promising its integration into existing car control
systems. The current prototype of VECARE using MiniDSP
microphones introduces an extra power consumption of about
3W on Raspberry PI 3 B+, resulting in a total of 6W. The
energy consumption can be optimized by improved hardware
and software implementation. Additionally, the power usage
is overall negligible as, again, we believe the CPD system can
run only for minutes after a car is parked.

7 Discussions and Limitations

VECARE takes an important and promising step towards a
ubiquitous solution to accurate and robust in-car CPD, an
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extremely challenging task. However, there is certainly room
for improvement and more to explore.

First, we cannot differentiate between an adult, a child, or
a pet. Neither do we distinguish a single subject from mul-
tiple ones, as the proposed SAS currently is limited to one
single user. A CPD system is expected to detect the pres-
ence of one or more children or pets, and the case of an adult
being locked in a car is uncommon. While it is possible to
distinguish between a child and an adult, to some extent, by
examining the range of the breathing rates, we leave this task
as an open challenge for the community. Second, although
the proposed SAS model presents a new approach to speed
estimation, the capability to estimate high speed is limited
by the sampling rate of acoustic CSI. It is worth exploring
how to break down this limit and enable speed tracking for
normal walking speed, which will foster many applications.
Third, there are more applications of the proposed SAS model
in smart homes and non-contact healthcare to be explored.
Towards that, one particular problem is to further improve the
sound audibility, including reducing transmit sound level and
shifting more to the inaudible frequency bands, e.g., 20-30
kHz used in commercial smart speakers like Amazon Echo
and Google Home. Fourth, while a universal threshold ε ap-
plies to different environments and cars, we notice one-time
calibration is needed for different devices due to hardware
diversity (Fig. 21). Future work explores to relax it. Last,
current evaluation is limited to children older than 7 months.
Although we have experimented with the neonatal simulator,
evaluation with real newborns is a worthwhile exploration.

VECARE can be deployed without any hardware modifi-
cation: It works with legacy in-car audio systems, and we
can leverage existing car control units for the computation
and necessary alert functions. Alternatively, it can also be
deployed as a standalone system to promote rapid adoption.
Additionally, system integration with other available sensing
modalities, such as seat sensors, radar, or WiFi, would promise
a more reliable CPD system, but at a higher cost and lower
ubiquity. These issues are, however, out of the scope of this
work, and we seek to learn more about real deployment with
industrial collaborations.

8 Related Work

Car Occupancy Sensing: CPD, or car occupancy detection
in general, has recently gained tremendous attention with vari-
ous technologies being explored. Early systems install special

sensors, such as optical/weight/pressure sensors [12, 32] as
well as capacitive sensors [4, 18, 54], on passenger seats/baby
car seats for detection (e.g., for seat belt reminder). These sys-
tems cannot detect a left-in-car child not in a designated seat.
Nor can they reliably differentiate animate targets from inan-
imate objects. PIR sensors [21, 55, 87] can extend the range
beyond the seats, but are limited to the LOS view and sensitive
to temperature changes. Camera-based systems [10, 13, 85]
can be accurate given good lighting conditions3, but cannot
see through seats, in addition to being privacy-invasive and
computation hungry. Radio-based systems have been recently
popular. The radar industry is promoting radar systems for
CPD in new car models [26, 28, 66]. UWB and mmWave
radars [8, 14, 34] feature high sensing resolution, yet the cov-
erage is limited to the FoV and the performance degrades
for NLOS scenarios. Moreover, they need precise installa-
tion with wire/cable harnesses, usually on the roof of a car,
to provide good coverage. With WiFi becoming prevalent
for in-car connectivity, it has been exploited by the indus-
try for CPD [45, 81]. Yet due to the innate limitations, it is
challenging to detect vital signs of little infants using WiFi.
Ultrasonic motion sensors have been used, e.g., in Hyundai
cars [20], yet only report low detection accuracy and are being
replaced [20]. Most importantly, all these solutions will incur
additional dedicated hardware and/or costly installation as
being non-standard offerings in cars, preventing their wide
adoption, especially for old car models.

Beyond CPD, there are more works on in-car driver mon-
itoring [68, 72, 80, 82, 83] and/or (adult) passenger detec-
tion [1,2,40] and even more on general human presence detec-
tion in homes especially using radio signals [30,61,77,84,89].
As the motion and vital signs of adults are of magnitude
stronger than those of young children, these approaches can-
not be directly applied to solve CPD. The closest to VECARE

is BreathJunior [71], which nicely embeds FMCW signals
into white noise for infant breathing monitoring, yet relies on
a microphone array and has a limited coverage of <1m.
Acoustic Sensing: Acoustic sensing has been an active area in
recent years. Various applications have been studied, includ-
ing gesture recognition [74,75], imaging [37,42], localization
and tracking [17, 41, 43, 56, 65, 69, 73, 86], vital sign moni-
toring [36, 53, 70, 71, 82], and healthcare [11, 46, 47], etc. A
recent work [35] points out several practical challenges of
acoustic sensing, such as audible sound leakage, affecting

3Infrared cameras can detect humans at night, but could still fail in dan-
gerous cases where the car interior is already heated up.



music play and voice call, which are less concerned in our
CPD application as the system is expected to only run for a
short period after a car is parked. Most of the existing works
explore geometrical features such as phase changes, Doppler
shifts, TDoA/ToA, etc [9, 53, 74]. Many even rely on a bulky
microphone array [69,71] for phased signal processing. While
these works are mostly resilient to multipaths, they do not
fully leverage them. In contrast, VECARE investigates a novel
statistical acoustic sensing model, which aims to leverage
all reflections. Despite extensive studies of statistical WiFi
sensing [23, 78, 79, 88–90] and statistical studies on acoustic
communication [33,62], none of the existing work has studied
statistical acoustic sensing. We introduce statistical models to
acoustic sensing, which we believe will open new directions
and inspire follow-up works in the community.

9 Conclusion

We present VECARE, the first CPD system using in-car speak-
ers and microphones. VECARE is an accurate and robust
solution to the critical hot car death problem, which can be
deployed on massive cars without any hardware changes. To
achieve so, we introduce a novel paradigm of statistical acous-
tic sensing and develop a pipeline of techniques that allows
motion detection, breathing estimation, and speed monitoring
in a unified framework. Real-world experiments show the
remarkable performance of VECARE, rendering it a promis-
ing solution in practice. The proposed SAS will inspire more
exciting research in the increasingly hot acoustic sensing area.
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A Appendix

A.1 Speed Estimation

Sampling Rate and Speed: A sufficient sampling rate of CSI
is required to estimate speed. We now discuss the relationship.
Given a sound frequency f with wavelength λ( f ), a mov-
ing speed v is expected to experience a peak at the delay of

τ = x0λ( f )
2πv

. Assume we will need at least Q samples to reliably
detect a peak, which corresponds to a delay of τmin = Q/Fs.
Then we can derive the minimum sampling rate required to

measure a speed of v by τ = x0λ( f )
2πv

> τmin = Q/Fs, which

implies Fs >
2πQv

x0λ( f ) . In other words, the maximum speed we

can support can be calculated as v < x0λ( f )Fs

2πQ
, which becomes

about 0.1 m/s at f = 20kHz (wavelength 1.7 cm), about 0.2
m/s at f = 10 kHz, and about 2 m/s at f = 1kHz, assuming
Q = 5 and a sampling rate of about 50 Hz (considering the
sound speed of c = 343m/s). Using lower frequencies imme-
diately allows to support higher speed, which however may
suffer more from ambient noises. How to break down the sam-
pling rate limitations and achieve estimation of daily speed
(e.g., 0.5 m/s to 2 m/s) using pseudo-ultrasound frequencies
remains worthwhile direction.
Speed MRC: For breathing signals, since the periodicity is
independent of subcarrier frequency, we can directly perform
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MRC across subcarriers. However, a further trick is needed to
combine speed signals because, for acoustic signals from 10
kHz to 24 kHz, the difference in the wavelengths cannot be
neglected (the wavelength at 10 kHz is approximately twice

of that at 24 kHz). Recall v̂ = x0λ( f )
2πτs

. Given the same speed v,
the first local peaks of the ACF on different subcarriers will
appear at different delays τs. Hence, to combine subcarriers
for speed signals, we need to first compensate the linear offsets
due to different wavelengths. Specifically, we can express
the ACF ρ̃( f ,τ) w.r.t a unit linearly proportional to λ( f ),
i.e., µ = τ

λ( f ) , and then average on ρ̃( f ,µ). The operation

is equivalent to scaling the ACF in the time lag dimension,
which can be achieved by interpolation in practice.

A.2 Synchronization

Here we show a simple but stringent proof of that synchroniza-
tion errors do not affect VECARE. Denote the CIR measured
under synchronization offsets as h̃(t):

h̃(t) = circshi f t(h(t),τo f f ), (7)

where h(t) is the true CIR, τo f f is the timing offset caused
by asynchronization, and circshi f t(·) represents circular shift.
The time offsets correspond to phase shifts in the frequency
domain. Thus we have the asychronized CSI:

H̃( f ) = H( f ) · e− j2π f τo f f , (8)

where H( f ) is the true CSI. Thus we get |H̃( f )| = |H( f )|,
meaning that VECARE is resilient to sychronization errors.

A.3 ACF Outliers
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Figure 28: ACF outliers of sharp interference.

Sudden impulse-like noises will cause an abrupt status
change in the CSI stream, which will smear the ACF cal-
culation and may lead to false motion detection. We notice
that ACF calculated with CSI of an abrupt status change will
exhibit a special pattern, which linearly decreases and then
linearly increases, as shown in Fig. 28. We also confirmed this
by simulation with data stream containing a sudden change
in the middle. The ACF pattern is unique and distinguishable
from normal ACF in case of motion, breathing, or empty en-
vironment. Based on this observation, we design a detector to
identify such abnormal ACFs and sift them out for presence
detection. The idea is to examine a single valley in the ACF
with linear increasing/decreasing trends on the two sides of
the valley. The approach turns out to be effective and accurate.
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