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ABSTRACT

Wi-Fi based sensing systems, although sound as being deployed

almost everywhere there is Wi-Fi, are still practically difficult to

be used without explicit adaptation efforts to new data domains.

Various pioneering approaches have been proposed to resolve this

contradiction by either translating features between domains or

generating domain-independent features at a higher learning level.

Still, extra training efforts are necessary in either data collection or

model re-training when new data domains appear, limiting their

practical usability. To advance cross-domain sensing and achieve

fully zero-effort sensing, a domain-independent feature at the lower

signal level acts as a key enabler. In this paper, we proposeWidar3.0,

a Wi-Fi based zero-effort cross-domain gesture recognition system.

The key insight of Widar3.0 is to derive and estimate velocity pro-

files of gestures at the lower signal level, which represent unique

kinetic characteristics of gestures and are irrespective of domains.

On this basis, we develop a one-fits-all model that requires only

one-time training but can adapt to different data domains. We im-

plement this design and conduct comprehensive experiments. The

evaluation results show that without re-training and across various

domain factors (i.e. environments, locations and orientations of per-

sons), Widar3.0 achieves 92.7% in-domain recognition accuracy and

82.6%-92.4% cross-domain recognition accuracy, outperforming the

state-of-the-art solutions. To the best of our knowledge, Widar3.0

is the first zero-effort cross-domain gesture recognition work via

Wi-Fi, a fundamental step towards ubiquitous sensing.
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1 INTRODUCTION

Human gesture recognition is the core enabler for a wide range of

applications such as smart home, security surveillance and virtual

reality. Traditional approaches use cameras [16, 24, 42], wearable

devices and phones [8, 17, 36] or sonar [22, 29, 48] as the sensing

module. While promising, these approaches pose inconvenience

due to their respective drawbacks including leakage of privacy, re-

quirement of on-body sensors and limit of sensing range. The need

for secure, device-free and ubiquitous gesture recognition interface

has triggered extensive research on sensing solutions based on com-

modity Wi-Fi. Pioneer attempts such as E-eyes [45], CARM [44],

WiGest [1] and WIMU [38] have been proposed. In principle, early

wireless sensing solutions extract either statistical features (e.g.,

histograms of signal amplitudes [45]) or physical features (e.g.,

power profiles of Doppler frequency shifts [44]) from Wi-Fi signals

and map them to human gestures. However, these primitive signal

features usually carry adverse environment information unrelated

to gestures. Specifically, due to lack of spatial resolution, wireless

signals, and their features as well, are highly specific to environment

where the gesture is performed, and the location and orientation

of the performer, as Figure 1 shows. For brevity, we unitedly term

these factors irrelevant to gestures as domain. As a result, the clas-

sifiers trained with primitive signal features in one domain usually

undergo drastically drop in accuracy with another domain.

Recent innovations in gesture recognition with Wi-Fi have ex-

plored cross-domain generalization ability of recognition models.

For example, recent works [20, 50] borrow the ideas from machine

learning, such as transfer learning and adversarial learning, and

apply advanced learning methodologies to improve cross-domain

recognition performance. Another solution, WiAG [39], derives a

translation function to generate signal features of the target domain

for model re-training. While to some extent achieving cross-domain

recognition, all existing works require extra training efforts in ei-

ther data collection or model re-training at each time a new target

domain is added into the recognition model. Even worse, correlated

with continuous location and orientation of a person, Wi-Fi signals

have infinite number of domains, making cross-domain training

approaches practically prohibitive.

A more promising but challenging solution is a “one-fits-all"

model that is able to train once, use anywhere. Such ideal model,

trained in one domain, can be directly used in new domains with-

out extra efforts, such as data collection, generation, or re-training.

Different from all existing approaches, our key idea is to move gen-

eralization ability downwardly at the lower signal level, rather than
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Figure 1: Cross-domain gesture recognition, where persons

may be at different locations and orientations relative toWi-

Fi links, and environments (e.g., lab, home, etc.). In this ex-

ample, one male and one female are performing clapping

gestures in two domains.

the upper model level. Specifically, we extract domain-independent

features reflecting only gesture itself from raw domain-dependent

signals. On this basis, we aim to build an explainable cross-domain

recognition model that can be applied in new scenarios with zero

effort and high accuracy.

However, we face three major technical challenges to achieve a

one-fits-all model. First, previously used signal features (e.g., ampli-

tude, phase, Doppler Frequency Shift(DFS)), as well as their statis-

tics (e.g., max, min, mean, distribution parameter), are absolutely

domain-dependent, meaning that their values vary with different

locations, orientations and environments even for the same gesture.

Second, it is difficult, for radio signals from only several links, to

describe human gestures and actions. For example, kinetic profile

of a single gesture still has hundreds of variables, posing the estima-

tion of kinetic profile as a highly under-determined problem. Third,

cross-domain generalization often requires sophisticated learning

models (e.g., deeper networks, a larger number of parameters, a

more complex network structure and more complicated loss func-

tions), which slow down or even obstruct training, over-consume

training data, and make the model less explainable.

To overcome these challenges, we propose Widar3.0, a Wi-Fi

based gesture recognition system. Widar3.0 uses channel state in-

formation (CSI) portrayed by COTSWi-Fi devices. Our prior efforts,

Widar [32] and Widar2.0 [33] track coarse human motion status,

e.g., location and velocity, by regarding a person as a single point.

Widar3.0, however, aims at recognizing complex gestures that in-

volve multiple body parts. The key component of Widar3.0 is our

novel theoretically domain-independent feature body-coordinate ve-

locity profile (BVP) that describes power distribution over different

velocities, at which body parts involved in the gesture movements.

Our observation is that each type of gestures has its unique ve-

locity profile in the body coordinate system (e.g., the coordinates

where the orientation of the person is the positive x axis) no matter

in which domain is the gesture performed. To estimate BVP, we

approximate BVP from several prominent velocity components

and further employ compressive sensing techniques to derive ac-

curate estimates. On this basis, we devise a learning model to cap-

ture spatial-temporal characteristics of gestures and finally classify

gestures. Through downward movement of model generalization

techniques closer to the raw signals, Widar3.0 enables zero-effort

cross-domain human gesture recognition with many expected prop-

erties simultaneously, including high and reliable accuracy, strong

generalization ability, explainable features, reduced amounts of

training data. We implement Widar3.0 on COTS Wi-Fi devices and

conduct extensive field experiments (16 users, 15 gestures, 15 loca-

tions and 5 orientations in 3 environments, and comparisons with

three state-of-the-art approaches). Especially, the results demon-

strate that Widar3.0 significantly improves the accuracy of gesture

recognition to 92.4% in cross-environment cases, while the recogni-

tion accuracy with raw CSI and DFS profiles are 40.2% and 77.8%

only. Across different types of domain factors including user’s loca-

tion, orientation, environment and user diversity,Widar3.0 achieves

average accuracy of 89.7%, 82.6%, 92.4% and 88.9%, respectively.

In a nutshell, our core contributions are three-fold. First, we

present a novel domain-independent feature that captures body-

coordinate velocity profiles of human gestures at the lower signal

level. BVP is theoretically irrespective of any domain information

in raw Wi-Fi signals, and thus acts as a unique indicator for hu-

man gestures. Second, we develop a one-fits-all model on the basis

of domain-independent BVP and a learning method that fully ex-

ploits spatial-temporal characteristics of BVP. The model enables

cross-domain gesture recognition without any extra effort of data

collection or model re-training. Third, though trained only once,

Widar3.0 achieves on average 89.7%, 82.6%, and 92.4% recognition

accuracy across locations, orientations, and environments, respec-

tively, which outperform the state-of-the-art solutions that require

re-training in new target domains. Such consistently high perfor-

mance demonstrates its strong ability of cross-domain generaliza-

tion. To the best of our knowledge, Widar3.0 is the first zero-effort

cross-domain gesture recognition via Wi-Fi, a fundamental step

towards ubiquitous sensing.

2 MOTIVATION

Widar3.0 addresses the problem of cross-domain gesture recog-

nition with Wi-Fi signals. Due to the lack of spatial resolution,

wireless signals are highly formatted by domain characteristics.

Either or not to some extent enabling cross-domain sensing, exist-

ing wireless sensing solutions have significant drawbacks in their

feature usage. The three main types of features are listed as follows:

Primitive features without cross-domain capability. Most

state-of-the-art activity recognition works extract primitive statis-

tical (e.g., power distribution, waveform) or physical features (e.g.,

DFS, AoA, ToF) from CSI [46]. However, due to different locations

and orientations of the person and multipath environments, fea-

tures of the same gesture may vary significantly and fail to serve

successful recognition. As a brief example, a person is asked to push

his right hand multiple times, yet with two orientations relative to

the wireless link. The spectrograms are calculated as in [44], and

dominant DFS caused by the movement of the hand is extracted. As

shown in Figure 2, while dominant DFS series of gestures with the

same domain form compact clusters, they differ greatly in trends

and amplitudes between two domains, and thus fail to indicate the

same gesture.
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Figure 2: Dominant DFS of gesture dif-

fers with person orientations and loca-

tions.

Figure 3: Complex gestures cause mul-

tiple DFS components.
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Figure 4: Accuracy of adversarial learn-

ing drops without target domain data.

Cross-domainmotion features for coarse tracking.Device-

free tracking approaches [26, 33] build quantitative relation be-

tween physical features of signal and the motion status of the

person, and enable location and velocity measurement across envi-

ronments. However, these works regard a person as single point,

which is infeasible for recognizing complex gestures that involve

multiple body parts. Figure 3 illustrates the spectrogram of a simple

hand clap, which contains two major DFS components caused by

two hands and a few secondary components.

Latent features fromcross-domain learningmethods.Cross-

domain learning methods such as transfer learning [50] and adver-

sarial learning [20] latently generate features of data samples in

the target domain, either by translating samples from the source

domain, or learning domain-independent features. However, these

works require extra efforts of collecting data samples from the

target domain and retraining the classifier each time new target

domains are added. As an example, we evaluate the performance of

an adversarial learning based model, EI [20] over different domain

factors (e.g., environment, location and orientation of the person).

Specifically, the classifier is trained with and without data samples

in every type of target domains. As shown in Figure 4, the system

accuracy obviously drops without the knowledge of the target do-

mains, demonstrating the need of extra data collection and training

efforts in these learning methodologies.

Lessons learned. The deficiency of existing cross-domain learn-

ing solutions asks for a new type of domain-independent feature.

Should it be achieved, a one-fits-all model could be built upon it to

save much data collection and training efforts. Widar3.0 is designed

to develop and exploit body-coordinate velocity profile (BVP) to

address the issue.

3 OVERVIEW OFWIDAR3.0

Widar3.0 is a cross-domain gesture recognition system using off-

the-shelf Wi-Fi devices. As shown in Figure 5, multiple wireless

links are deployed around the monitoring area. Wireless signals,

as distorted by the user in the monitoring area, are acquired at

receivers and their CSI measurements are logged and preprocessed

to remove amplitude noises and phase offsets.

The major parts of Widar3.0 are two modules, the BVP generation

module and the gesture recognition module.

Upon receiving sanitized CSI series, Widar3.0 divides CSI series

into small segments, and generates BVP for each CSI segment via

the BVP generationmodule.Widar3.0 first prepares three intermedi-

ate results: DFS profiles, the orientation and location information of

the person. DFS profiles are estimated by applying time-frequency

analysis to CSI series. The orientation and location information of

the person is calculated via motion tracking approaches. Thereafter,

Widar3.0 applies the proposed compressed-sensing-based optimiza-

tion approach to estimate BVP of each CSI segment. The BVP series

is then output for following gesture recognition.

The gesture recognition module implements a deep learning

neural network (DNN) for gesture recognition. With the BVP series

as input, Widar3.0 performs normalization on each BVP and across

the whole series, in order to remove the irrelevant variations of

instances and persons. Afterwards, the normalized BVP series is

input into a spatial-temporal DNN, which has two main functions.

First, the DNN extracts high-level spatial features within each BVP

using convolutional layers. Then, recurrent layers are adopted to

perform temporal modeling of inter-characteristics between BVPs.

Finally, the output of the DNN is used to indicate the type of the

gesture performed by the user. In principle, Widar3.0 achieves

zero-effort cross-domain gesture recognition, which requires only

one-time training of the DNN network, but can be directly adapted

to as many as new domains.

4 BODY-COORDINATE VELOCITY PROFILE

Intuitively, human activities have unique velocity distributions

across all body parts involved, which can be used as activity indica-

tors. Among all parameters (i.e. ToF, AoA, DFS and attenuation) of

the signal reflected by the person, DFS embodies most information

of velocity distribution. Unfortunately, DFS is also highly corre-

lated with the location and orientation of the person, circumventing

direct cross-domain activity recognition with DFS profiles.

In this section, we tempt to derive distribution of signal power

over velocity components in the body coordinate system, i.e. BVP,

which uniquely indicates the type of activities. Preliminary of the

CSI model is first introduced (§ 4.1), followed by the formulation

and calculation of BVP (§ 4.2 and § 4.3). Finally, prerequisites for

calculating BVP are given (§ 4.4).

4.1 Doppler Representation of CSI

CSI portrayed by off-the-shelf Wi-Fi devices describes multipath

effects in the indoor environment at arrival time t of packets and
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frequency f of subcarriers:

Ĥ ( f , t ) =
( L∑
l=1

αl ( f , t )e
−j2π f τl (f ,t )

)
e jϵ (f ,t ) , (1)

where L is the number of paths, αl and τl are the complex attenua-

tion and propagation delay of the l-th path, and ϵ ( f , t ) is the phase
error caused by timing alignment offset, sampling frequency offset

and carrier frequency offset.

By representing phases of multipath signals with the correspond-

ing DFS, CSI can be transformed as [32]:

Ĥ ( f , t ) =
(
Hs ( f ) +

∑
l ∈Pd

αl (t )e
j2π
∫
t

−∞ fDl (u )du
)
e jϵ (f ,t ) , (2)

where the constant Hs is the sum of all static signals with zero DFS

(e.g., LoS signal), and Pd is the set of dynamic signals with non-zero

DFS (e.g., signals reflected by the target).

With conjugate multiplication of CSI of two antennas on the

same Wi-Fi NIC calculated, and out-band noises and quasi-static

offsets filtered out, random offsets can be removed and only promi-

nent multipath components with non-zero DFS are retained [26].

Further applying short-term Fourier transform yields power distri-

bution over the time and Doppler frequency domains. One example

of the spectrogram of a single link is shown in Figure 3. We denote

each time snapshot in spectrograms as a DFS profile. Specifically, a

DFS profile D is a matrix with dimension as F ×M , where F is the

number of sampling points in the frequency domain, andM is the

number of transceiver links. Based on DFS profile from multiple

links, we then derive domain-independent BVP.
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v1

v2
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Direction
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Figure 6: Relationship between the BVP and DFS profiles.

Each velocity component in BVP is projected onto the nor-

mal direction of a link, and contributes to the power of the

corresponding radial velocity component in the DFS profile.

4.2 From DFS to BVP

When a person performs a gesture, his body parts (e.g., two hands,

two arms and the torso) move at different velocities. As a result,

signals reflected by these body parts experience various DFS, which

are superimposed at the receiver and form the corresponding DFS

profile. As discussed in § 2, while DFS profile contains the infor-

mation of the gesture, it is also highly specific to the domain. In

contrast, the power distribution over physical velocity in the body

coordinate system of the person, is only related to the characteris-

tics of the gesture. Thus, in order to remove the impact of domain,

BVP is derived out of DFS profiles.

The basic idea of BVP is shown in Figure 6. For practicality, a BVP

V is quantized as a discrete matrix with dimension as N ×N , where

N is the number of possible values of velocity components decom-

posed along each axis of the body coordinates. For convenience, we

establish the local body coordinates whose origin is the location

of the person and positive x-axis aligns with the orientation of

the person. We will discuss approaches of estimating a person’s

location and orientation in § 4.4. Currently, it is assumed that the

global location and orientation of the person are available. Then the

known global locations of wireless transceivers can be transformed

into the local body coordinates. Thus, for better clarity, all locations

and orientations used in the following derivation are in the local

body coordinates. Suppose the locations of the transmitter and

the receiver of the i-th link are �l
(i )
t = (x

(i )
t ,y

(i )
t ), �l

(i )
r = (x

(i )
r ,y

(i )
r ),

respectively, then any velocity components �v = (vx ,vy ) around
the human body (i.e. the origin) will contribute its signal power to

some frequency component, denoted as f (i ) (�v ), in the DFS profile
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Figure 7: The BVP series of a pushing and pulling gesture. The main velocity component corresponding to the person’s hand

is highlighted with red circles in all snapshots.

of the i-th link [32]:

f (i ) (�v ) = a
(i )
x vx + a

(i )
y vy . (3)

a
(i )
x and a

(i )
y are coefficients determined by locations of the trans-

mitter and the receiver:

a
(i )
x =

1

λ
(

x
(i )
t

‖�l (i )t ‖2
+

x
(i )
r

‖�l (i )r ‖2
),

a
(i )
y =

1

λ
(
y
(i )
t

‖�l (i )t ‖2
+

y
(i )
r

‖�l (i )r ‖2
),

(4)

where λ is the wavelength of Wi-Fi signal. As static components

with zero DFS (e.g., the line of sight signals and dominant reflec-

tions from static objects) are filtered out before DFS profiles are

calculated, only signals reflected by the person are retained. Be-

sides, when the person is close to the Wi-Fi link, only signals with

one time reflection have prominent magnitudes [33] as Figure 3

shows. Thus, Equation 3 holds valid for the gesture recognition

scenario. From the geometric view, Equation 3 means that the 2-D

velocity vector �v is projected on a line whose direction vector is

d (i ) = (−a(i )y ,a
(i )
x ). Suppose the person is on an ellipse curve whose

foci are the transmitter and the receiver of the i-th link, then d (i )

is indeed the normal direction of the ellipse at the person’s loca-

tion. Figure 6 shows an example where the person generates three

velocity components �vj , j = 1, 2, 3, and projection of the velocity

components on the DFS profiles of three links.

Since coefficients a
(i )
x and a

(i )
y only depend on the location of

the i-th link, the relation of projection of the BVP on the i-th link

is fixed. Specifically, an assignment matrix A
(i )
F×N 2 can be defined:

A
(i )
j,k
=

{
1 fj = f (i ) (�vk )
0 else

, (5)

where fj is the j-th frequency sampling point in the DFS profile,

and �vk is velocity component corresponding to the k-th element

of the vectorized BVP V . Thus, the relation between DFS profile of

the i-th link and the BVP can be modeled as:

D (i ) = c (i )A(i )V (6)

where c (i ) is the scaling factor due to propagation loss of the re-

flected signal.

4.3 BVP Estimation

How to recover BVP from DFS profiles of only several wireless links

is another main challenge because the kinetic profile of a single

gesture has hundreds of variables, posing the BVP estimation from

DFS profiles as a severely under-determined problem with only a

limited number of constraints provided by several wireless links.

Specifically, in practice, we estimate one BVP from DFS profiles

calculated from 100 ms CSI data. Due to the uncertainty principle,

the frequency resolution of DFS profiles is only about 10 Hz. Given

that the range of human-induced DFS is within ± 60 Hz [44], the

DFS profile of one link can only provide about 12 constraints. In

contrast, we moderately set the range and the resolution of veloci-

ties along two axes of the body coordinates as ± 2 m/s and 0.2 m/s,

respectively, leading to as much as 400 variables! Fortunately, when

a person performs a gesture, only a few dominant distinct velocity

components exist, due to the limited number of major reflecting

multipath signals. Thus, there is an opportunity to correctly recover

the BVP from DFS profiles of only several links.

Before a proper solution of BVP developed, it is necessary to

understand the minimum number of links required to uniquely

recover the BVP. Figure 6 shows an intuitive example with three

velocity components vj , j = 1, 2, 3. With only the first two links

(blue and green), the three velocity components create three power

peaks in each DFS profile. However, when we recover the BVP,

there are 9 candidates of velocity components, i.e. vj , j = 1, 2, 3 and

uk ,k = 1, · · · , 6. And one can easily find an alternate solution, i.e.

{u1,u3,u6}, meaning that two links are insufficient.

By adding the third link (purple), it is able to resolve the ambigu-

ity with high probability no matter how many velocity components

exist, if no overlap of projections happens in the third DFS profile.

When projections overlap, however, it is possible that adding the

third or even more links cannot resolve the ambiguity. For example,

suppose the third link in the Figure 6 is in parallel with the y-axis,
and there are three overlaps of projections (i.e. {u1,v2}, {v3,u4,u6}
and {u3,v1}), then the ambiguous solution {u1,u3,u6} is still not
resolvable. However, such ambiguity can hardly happen due to its

stringent requirement on the distribution of velocity components

as well as the orientation of the links. Moreover, we can further

reduce the probability of the ambiguity by adding more links. We

evaluate the impact of the number of links used by Widar3.0 on

system performance in Section 6.5.

With observing of the sparsity of BVP and validating the feasi-

bility of recovering BVP from multiple links, we adopt the idea of
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Figure 8: Structure of gesture recognition model.

compressed sensing [13] and formulate the estimation of BVP as

an l0 optimization problem:

minV

M∑
i=1

|EMD(A(i )V ,Di ) | + η‖V ‖0, (7)

whereM is the number of Wi-Fi links. The sparsity of the number

of the velocity components is coerced by the term η‖V ‖0, where
η represents the sparsity coefficients and ‖ · ‖0 is the number of

non-zero velocity components.

EMD(·, ·) is the Earth Mover’s Distance [35] between two dis-

tributions. The selection of EMD rather than Euclidean distance

is mainly due to two reasons. First, the quantization of BVP intro-

duces approximation error, i.e. projection of velocity components

to the DFS bin might be adjacent to the true one. Such quantization

error can be relieved by EMD, which takes the distance between

bins into consideration. Second, there are unknown scaling factors

between the BVP and DFS profiles, making the Euclidean distance

inapplicable.

Figure 7 shows an example of solved BVP series of a pushing

and pulling gesture. The dominant velocity component from the

hand and the coupling ones from the arm can be clearly observed.

4.4 Location and Orientation Prerequisites

Widar3.0 requires the location and orientation of the person to

calculate the domain-independent BVP. In common application

scenarios of Widar3.0, when a person wants to interact with the

device, he or she approaches it and performs interactive gestures for

recognition and response. The antecedent movement of the person

gives the chance for estimating his location and orientation, which

are the location and moving direction of the person at the end of

the trace. Since Wi-Fi based passive tracking has been extensively

studied,Widar3.0 can exploit existing sophisticated passive tracking

systems, e.g., LiFS [41], IndoTrack [26] and Widar2.0 [33], to obtain

the location and orientation of the person. However, Widar3.0

differs from these passive tracking approaches by estimating BVP

rather than main torso velocity, and thus further extends the scope

of Wi-Fi based sensing. Note that the state-of-the-art localization

errors are within several decimeters, and orientation estimation

errors are within 20 degrees. We evaluate the impact of location

and orientation error by experiments in Section 6.5.

5 RECOGNITION MECHANISM

In Widar3.0, we design a DNN learning model to mining the spatial-

temporal characteristics of the BVP series. Figure 8 illustrates the

overall structure of the proposed learning model. Specifically, the

BVP series is first normalized to remove irrelevant variations caused

by instances, persons and hardware settings (§ 5.1). The normalized

output is then input into a hybrid deep learning model, which from

bottom to top consists of a convolutional neural network (CNN)

for spatial feature extraction (§ 5.2) and a recurrent neural network

(RNN) for temporal modeling (§ 5.3).

The designed model is a result of the effectiveness of the domain-

independent feature BVP. With BVP as input, the hybrid CNN-

RNN model can achieve accurate cross-domain gesture recognition

although the learning model itself does not possess generalization

capabilities. We will verify that the CNN-RNN model is a simple

but effective method in Section 6.4.

5.1 BVP Normalization

While BVP is theoretically only related to gestures, two practical

factors may affect its stability as the gesture indicator. First, the

overall power of BVP may vary due to the adjustment of trans-

mission power. Second, in practice, instances of the same type of

gesture performed by different persons may have different time

length and moving velocities. Moreover, even instances performed

by the same person may slightly vary. Thus, it is necessary to re-

move these irrelevant factors to retain the simplicity of the learning

model.

For signal power variation, Widar3.0 normalizes the element

values in each single BVP by adjusting the sum of all elements in

BVP to 1. For instance variation,Widar3.0 normalizes the BVP series

along the time domain. Specifically, Widar3.0 first sets the standard

time length of gestures, denoted as t0. Then, for a gesture with time

length as t , Widar3.0 scales its BVP series to t0. The assumption

behind the scaling operation is that the total distancemoved by each

body part remains fixed. Thus, to change the time length of the BVP

series, Widar3.0 first scales coordinates of all velocity component

in the BVP by a factor of t
t0
, and then resamples the series to the

sampling rate of the original BVP series. After normalization, the

output becomes related to gestures only, and is input to the deep

learning model.

5.2 Spatial Feature Extraction

The input of the learning model, BVP data, is similar to a sequence

of images. Each single BVP describes the power distribution over

physical velocity during a sufficiently short time interval. And the

continuous BVP series illustrates how the distribution varies corre-

sponding to a certain kind of action. Therefore, to fully understand

the derived BVP data, it is intuitive to extract spatial features from

each single BVP first and then model the temporal dependencies of

the whole series.

CNN is a useful technique to extract spatial features and com-

press data [27, 47], and it is especially suitable for handling the

single BVP, which is highly sparse but preserves spatial locality, as
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a velocity component usually corresponds to the same body part

as its neighbors with similar velocities. Specifically, the input BVP

series, denoted asV , is a tensor with dimension as N ×N ×T , where
T is the number of BVP snapshots. For the t-th sampling BVP, the

matrix V· ·t is fed into the CNN. Within the CNN, 16 2-D filters are

first applied to V· ·t to obtain local patterns in the velocity domain,

which form the outputV
(1)
· ·t . Then, max pooling is applied toV

(1)
· ·t to

down-sample the features and the output is denoted as V
(2)
· ·t . With

V
(2)
· ·t flattened into the vector �v

(2)
· ·t , two 64-unit dense layers with

ReLU as activation functions are used to further extract features in

a higher level. Note that one extra dropout layer is added between

two dense layers to reduce overfitting. The final output �v · ·t charac-
terizes the t-th sampling BVP. And the output series is used as the

input of following recurrent layers for temporal modeling.

5.3 Temporal Modeling

Besides local spatial features within each BVP, BVP series also con-

tains temporal dynamics of the gesture. Recurrent neural networks

(RNN) are appealing in that they can model complex temporal dy-

namics of sequences. There are different types of RNN units, e.g.,

SimpleRNN, Long Short-Term Memory (LSTM) and Gated Recur-

rent Unit (GRU) [12]. Compared with original RNNs, LSTMs and

GRUs are more capable of learning long-term dependencies, and

we choose GRUs because GRU achieves performance comparable to

that of LSTM on sequence modeling, but involves fewer parameters

and is easier to train with less data [12].

Specifically, Widar3.0 chooses single-layer GRUs to model the

temporal relationships. Inputs {�v · ·t , t = 1, · · · ,T } output from CNN

are fed into GRUs and a 128-dimensional vector �v · ·r is generated.
Furthermore, a dropout layer is added for regularization, and a

softmax classifier with cross-entropy loss for category prediction is

utilized. Note that for recognition systems which involve more so-

phisticated activities with longer durations, the GRU-based models

can be transformed into more complex versions [11, 47]. In § 6.4,

we will verify that single-layer GRUs are sufficient for capturing

temporal dependencies for short-time human gestures.

6 EVALUATION

This section presents the implementation and detailed performance

of Widar3.0.

6.1 Experiment Methodology

Implementation.Widar3.0 consists of one transmitter and at least

three receivers. All transceivers are off-the-shelf mini-desktops

(physical size 170mm × 170mm) equipped with an Intel 5300 wire-

less NIC. Linux CSI Tool [18] is installed on devices to log CSI

measurements. Devices are set to work in the monitor mode, on

channel 165 at 5.825 GHz where there are few interfering radios as

interference does pose severe impacts on the collected CSI measure-

ments [54]. The transmitter activates one antenna and broadcasts

Wi-Fi packets at a rate of 1,000 packets per second. The receiver ac-

tivates all three antennas which are placed in a line. We implement

Widar3.0 in MATLAB and Keras [10].

Evaluation setup.To fully explore the performance ofWidar3.0,

we conduct extensive experiments on gesture recognition in 3 in-

door environments: an empty classroom furnished with desks and

chairs, a spacious hall and an office room with furniture like sofa

and tables. Figure 9 illustrates the general environmental features

and the sensing area in different rooms. Figure 10 shows a typical

example of the deployment of devices and domain configurations

in the sensing area, which is a 2m × 2m square. Note that the 2m

× 2m square is a typical setting to perform interactive gestures

for recognition and response, especially in the scenario of smart

home, with more Wi-Fi nodes incorporated into smart devices (e.g.,

smart TV, Xbox Kinect, home gateways, smart camera) to help.

We assume that only the gesture performer is in the sensing area

as moving entities introduce noisy reflection signals and further

result in less accurate DFS profiles of the target gestures. Except for

the two receivers and one transmitter placed at the corner of the

sensing area, the remaining four receivers can be deployed at ran-

dom locations outside two sides of the sensing area. As Section 4.3

has mentioned, the deployment of devices hardly pose impacts

on Widar3.0 theoretically. All devices are held up at the height of

110 cm, where users with different heights can perform gestures

comfortably. In total, 16 volunteers (12 males and 4 females) with

different heights (varying from 185 cm to 155 cm) and somatotypes

participate in experiments. The ages of the volunteers vary from 22

to 28. And the details of the volunteer information are illustrated

in Figure 12.

Dataset. We collect gesture data from 5 locations and 5 ori-

entations in each sensing area, as illustrated in Figure 10. All ex-

periments are approved by our IRB. Two types of datasets are
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collected. Specifically, the first dataset consists of common hand

gestures used in human-computer interaction, including pushing

and pulling, sweeping, clapping, sliding, drawing circle and draw-

ing zigzag. The sketches of the six gestures are plotted in Figure 11.

This dataset contains 12,000 gesture samples (16 users × 5 positions
× 5 orientations × 6 gestures × 5 instances). The second dataset is

collected for a case study of more complex and semantic gestures.

Two volunteers (one male and one female) draw number 0 ∼ 9 in

the horizontal plane, and totally 5,000 samples (2 users × 5 positions
× 5 orientations × 10 gestures × 10 instances) are collected. Before

collecting the datasets, we ask volunteers to watch the example

video of each gesture. The datasets and the example videos are

available at website1.

Prerequisites Acquisition. The position and orientation of the

user are prerequisites for calculation of BVP. In general, the last

estimation of location and the last estimation of moving direction

can be provided by tracking systems[26, 33, 41], as the location

and orientation of the user in Widar3.0. Note that the function of

Widar3.0 is independent of that of the motion tracking system. To

fully understand how Widar3.0 works, we record the ground truth

of location and orientation of the user in most experiments, and

explicitly introduce location and orientation error in the parameter

study (Section 6.5) to evaluate the relation between recognition

accuracy and location and orientation errors.

6.2 Overall Accuracy

Taking all domain factors into consideration, Widar3.0 achieves an

overall accuracy of 92.7%, with 90 and 10 percentage data collected

in Room 1 used for training and testing, respectively. Figure 13a

shows the confusion matrix of 6 gestures in dataset 1, and Widar3.0

achieves consistently high accuracy of over 85% for all gestures.

We also conduct experiments with gestures of an “unknown” class

are additionally added. Volunteers are required to perform arbitrary

gestures except for the above 6 gestures. The overall accuracy drops

to 90.1% and Widar3.0 can differentiate the unknown class with an

accuracy of 87.1%. The reasons are as follows. On one hand, gestures

from an “unknown” class might be similar to the predefined ones

to a certain degree. On the other hand, the collected “unknown”

gestures are still limited. We believe the results can be further

improved if we introduce additional filtering mechanisms or modify

1http://tns.thss.tsinghua.edu.cn/widar3.0/index.html

the learning model to solve the issue of “novelty detection”, which

is another significant topic in recognition problems.

Figure 13b, 13c, 13d and 13e further show confusion matrices

considering each specific domain factors. For each domain factor,

we calculate average accuracy of cases where one out of all domain

instances are used for testing, while the rest domain instances are

for training. The average accuracy over all gestures are provided

as well, and it can be seen that Widar3.0 achieves consistent high

performance across different domains, demonstrating its capability

of cross-domain recognition.

We observe that for both in-domain and cross-domain cases,

the gestures “pushing and pulling”, “drawing circle” and “drawing

zigzag” usually correspond to a lower accuracy. While the “pushing

and pulling” gesture is the simplest one among all gestures, it is

performed just in front of the user torso, and is more likely to be

blocked from the perspectives of certain links, which results in less

accurate BVP estimation as shown in the following experiments

(Section 6.5). When users perform the gesture “drawing circle” or

“drawing zigzag”, the trajectory has significant changes in vertical

direction. However, Widar3.0 is designed to extract BVP only in the

horizontal plane, leading to information loss for the two gestures,

and decrease in recognition accuracy.

Case study. We now examine if Widar3.0 still works well for

more complex gesture recognition tasks. In this case study, volun-

teers draw number 0∼9 in the horizontal plane and 5,000 samples

are collected in total. We divide the dataset into training and test-

ing randomly with the ratio 9:1. As shown in Figure 13f, Widar3.0

achieves satisfying results of over 90% for 8 gestures and the average

accuracy is 92.9%.

6.3 Cross-Domain Evaluation

We now evaluate the overall performance of Widar3.0 on across

different domain factors, including environment, person diversity

and location and orientation of the person. For evaluation on each

domain factor, we keep the other domain factors unchanged, and

perform leave-one-out cross validation on the datasets. The system

performance, in terms of mean and variance of the accuracy, is

shown in Figure 14∼17.
Location independence. The model is trained on the BVPs

of random 4 locations, all 5 orientations and 8 people in Room

1. And the data collected at the last location in the same room is

used for testing. As shown in Figure 14, the average accuracies for

all locations uninvolved in training are all above 85%. Widar3.0

achieves best performance of 92.3% with location e , which is at

the center of the sensing area, as the target domain. The accuracy

descends to 85.3% when testing dataset is collected at location d , as
wireless signal reflected by human-body becomes weaker after a

longer distance of propagation, which leads to less accurate BVPs.

In addition, BVP is modeled from signals reflected by the person. If

the person happens to pass his arm through the line-of-sight path

of any links, the accuracy will slightly drop, as proved by the result

of location b.
Orientation sensitivity. In this experiment, we select each ori-

entation as the target domain and other 4 orientations as the source

domain. Figure 15 shows that the accuracy remains above 80% for

orientation 2, 3, 4. Compared with best target orientation 3, whose
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(c) Cross Orientation (DataSet 1: 82.6%)
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Figure 13: Confusion matrices of different settings with two gesture datasets.

accuracy is around 90%, the performance at orientation 1&5 de-

clines by over 10%. The reason is that gestures might be shadowed

by human body in these two orientations and the number of ef-

fective wireless links for BVP generation decreases. For common

gesture recognition applications (e.g., TV control), however, it is

reasonable to assume that when the user faces towards the TV,

his orientation does not deviate much from most wireless devices,

a sufficient number of which could be used for accurate gesture

recognition.

Environment diversity. The accuracy across different envi-

ronments is another significant criterion for performance of cross-

domain recognition. In this experiment, gesture samples collected

in room 1 are used as the training dataset, and three groups of ges-

ture samples collected in three rooms are used as testing datasets.

As Figure 16 depicts, while the accuracy for different rooms slightly

drops, the average accuracy preserves over 87% even if the environ-

ment changes totally. In a nutshell, Widar3.0 is robust to different

environments.

Person variety. Data collected from different persons may have

discrepancy due to their various behavior patterns. Widar3.0 incor-

porates BVP normalization to alleviate this problem. To evaluate the

performance of Widar3.0 on different users, we train the model on

a dataset from every combination of 7 persons, and then test with

the data of the resting person. Figure 17 shows that the accuracy

remains over 85% across 7 persons. The impact of the number of per-

sons used in training the recognition model is further investigated

in Section 6.5.

6.4 Method Comparison

This section compares the capability of cross-domain recognition

with different methods, learning features and structures of learn-

ing networks. In the experiment, training and testing datasets are

collected separately in Room 1 and 2.

Comparison with the state-of-the-arts works.We compare

Widar3.0 against several alternative state-of-the-arts methodolo-

gies, CARM[44], EI[20] and CrossSense[50], where the latter two

are feasible for cross-domain recognition. Specifically, CARM uses

DFS profiles as learning features and adopts HMM model. EI in-

corporates an adversarial network and specializes the training loss

to additionally exploit characteristics of unlabeled data in target

domains. CrossSense proposes an ANN-based roaming model to

translate signal features from source domains to target domains, and

employs multiple expert models for gesture recognition. Figure 18

shows the system performance of the four approaches. Widar3.0

achieves better performance with the state-of-the-art cross-domain

learning methodologies, EI and CrossSense, and it does not require

extra data from a new domain or model re-training. In contrast, both

feature and learning model of CARM do not have cross-domain

capability, which is the main reason for its significantly lower recog-

nition accuracy.

Comparison of input features. We compare three types of

features with different levels of abstraction from raw CSI measure-

ments, i.e. denoised CSI, DFS profiles and BVP, by feeding them

into the CNN-GRU hybrid deep learning model, similar to that in

Widar3.0. Specifically, the size of denoised CSI is 18 (the number of

antennas of 6 receivers) × 30 (the number of subcarriers) × T (the

number of time samples), and the DFS profile has the shape as 6



A B C D E

Location

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Figure 14: Accuracy distributions for

cross-location evaluation.

1 2 3 4 5

Orientation

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Figure 15: Accuracy distributions for

cross-orientation evaluation.

R1-R1 R1-R2 R1-R3

Room

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Figure 16: Accuracy distributions for

cross-environment evaluation.

1 2 3 4 5 6 7 8

Person ID

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Figure 17: Accuracy distributions for

cross-person evaluation.

Widar3.0 CARM EI CrossSense
Methods

0.4

0.5

0.6

0.7

0.8

0.9

1
A

cc
ur

ac
y

Figure 18: Comparison of recognition

approaches.

Denoised CSI DFS BVP

Input feature

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
cc

ur
ac

y

Figure 19: Comparison of input fea-
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(the number of receivers) × F (the number of Doppler frequency

samples) × T (the number of time samples). As shown in Figure 19,

BVP outperforms both denoised CSI and DFS, with an increase

of accuracy by 52% and 15%, respectively. The performance im-

provement of BVP attributes its immunity to changes of layouts of

transceivers, which however may significantly influences the other

two types of features.

Comparison of learning model structures. Different deep

learning models are further compared and the system performance

is demonstrated in Figure 20. Specifically, the CNN-GRU hybrid

model increases the accuracy by around 5% compared with the

simple GRU model which merely captures temporal dependencies.

The former model benefits from representative high-level spatial

features within each BVP snapshot. In addition, we also feed BVP

into a two-convolutional-layer CNN-GRU hybrid model and a CNN-

Hierarchical-GRU model [11]. It is shown that a more complex deep

learning model does not promote the performance, demonstrating

that BVP of different gestures are distinct enough to be discrimi-

nated by a simple but effective classifier.

6.5 Parameter Study

Impact of link numbers. In the above experiments, 6 links are

deployed for more accurate estimation of BVP. This section stud-

ies the impact of the number of links on system performance. As

shown in Figure 21, the accuracy gradually decreases as the num-

ber of links reduces from 6 to 3, but experiences a more significant

drop when only two links are used. The main reason is that some

BVPs cannot be correctly recovered with only 2 links considering

the ambiguity mentioned in Section 4.3, and gestures at certain

locations or orientations cannot be fully captured due to blockage.

Impact of location and orientation estimation error. Local-

izations and orientations provided by Wi-Fi based motion tracking

systems usually have errors of about several decimeters and 20

degrees, respectively. Thus, it is necessary to understand how these

errors impact the performance of Widar3.0. Specifically, we record

ground truth of location and orientation, and calculate errors where

gestures are performed. On one hand, as shown in Figure 22, the

overall accuracy remains over 90% when the location error is within

40 cm, but then drops as the error further increases. On the other

hand, Figure 23 shows that the overall accuracy gradually drops

with more deviation of orientation. While the tracking errors nega-

tively impact the performance ofWidar3.0, taking practical location

and orientation errors into consideration, we believe existing mo-

tion tracking works can still provide location and orientation results

with acceptable accuracy.

Impact of training set diversity. This experiment studies how

the number of volunteers in training dataset impacts the perfor-

mance. Specifically, a varying number of volunteers from 1 to 7

participate in collecting the training dataset, and data from another

new person is used to test Widar3.0. Figure 24 shows that the aver-

age gesture recognition accuracy decreases from 89% to 74% when

the number of people for training varies from 7 to 1. The reasons

come from two folds. First, with the training dataset contributed by

fewer volunteers, the deep learning model will be less thoroughly

trained. Second, the behavior difference between testing persons

and training persons will be amplified even if we have adopted BVP

normalization. In general, Widar3.0 promises an accuracy of over

85% with more than 4 people in the training set.

Impact of transmission rates. As Widar3.0 requires packet

transmission for gesture recognition, normal communication flow
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Figure 25: Impact of transmission rates.

might be interfered. Therefore, we evaluate the performance of

Widar3.0 with different CSI transmission rates. We collect CSI mea-

surements at the initial transmission rate of 1,000 packets per sec-

ond, and down-sample the CSI series to 750 Hz, 500 Hz, 250 Hz.

Figure 25 shows that the accuracy degrades slightly by around 4%

when the sampling rate drops to 250Hz, and remains over 85% for all

cases. In addition, Widar3.0 can further reduce the impacts on com-

munication with shorter packets used as only CSI measurements

are useful for the recognition tasks.

7 DISCUSSIONS

User height. Since transceivers are placed at the same height, CSI

measurements mainly capture the horizontal velocity components.

Thus, different user heights may impact the recognition perfor-

mance of Widar3.0, as the devices may observe different groups of

velocity components intercepted at this height. However, Widar3.0

still has the capability of recognizing gestures in 3-D space, as com-

mon gestures remain their uniqueness even within the fixed height.

As shown in the experiments, Widar3.0 is able to recognize ges-

tures “draw circle” and “draw zigzag”, which both contain vertical

velocity components due to the fixed length of arms. By regarding

the person as on an ellipsoid whose foci are the transceivers of

a link, the BVP can be further generalized to 3-D space. Further

work includes optimizing the deployment of Wi-Fi links to enable

calculation of 3-D BVP, and revising the learning model with 3-D

BVPs as input.

Number of Wi-Fi links for gesture recognition. Although

three wireless links are sufficient to resolve the ambiguity with high

probability for BVP generation, six receivers in total are deployed

in the experiments. The reasons are two folds. First, compared with

macro activities, the reflected signal of micro gestures is much

weaker, since the effective area of hand and arm is much smaller

than that of torso and leg, resulting in less prominent DFS profiles.

Second, gestures with hands and arms may be opportunistically

shadowed by other body parts when the user faces away from the

link. For macro activity such as walking, running, jumping and

falling, it is believed that the number of Wi-Fi links required for

recognition can be reduced. It is worth noting that Widar3.0 does

not require fixed deployment of Wi-Fi devices in the environment,

as BVP is the power distribution over absolute velocities.

Applications beyond gesture recognition. While Widar3.0

is a Wi-Fi based gesture system, the feature used in Widar3.0, BVP,

can theoretically capture movements over the whole body of the

person, and thus is envisioned to be used in other device-free sens-

ing scenarios, such as macro activity recognition, gait analysis and

user identification. In these scenarios where users are likely to con-

tinuously change their locations and orientations, BVP calculation

and motion tracking approaches can be intermittently invoked to

obtain BVPs along the whole trace, which then may serve as a

unique indicator for user’s activity or identity.

8 RELATEDWORK

Our work is highly related to wireless human sensing techniques,

which are roughly categorized into model-based and learning-based

ones, targeting at localization and activity recognition, respectively.

Model-basedwireless localization.Model-based human sens-

ing explicitly builds physical link between wireless signals and

human movements. On the signal side, existing approaches extract

various parameters of signals reflected or shadowed by human,

including DFS [26, 32, 44], ToF [2–4, 21], AoA/AoD [2, 5, 21, 25]

and attenuation [7, 41]. Based on types of devices used, parameters

with different extent of accuracy and resolution can be obtained.

WiTrack [3, 4] develops FMCW radar with wide bandwidth to ac-

curately estimate ToFs of reflected signals. WiDeo [21] customizes



full-duplex Wi-Fi to jointly estimate ToFs and AoAs of major re-

flectors. In contrast, though limited by the bandwidth and antenna

number, Widar2.0 [33] improves resolution by jointly estimating

ToF, AoA and DFS.

On the human side, existing model-based works only tracks

coarse human motion status, such as location [4, 41], velocity [26,

32], gait [43, 49] and figure [2, 19]. Though not detailed enough, they

provide coarse human movement information, which can further

help Widar3.0 and other learning-based activity recognition works

to remove domain dependencies of input signal features.

Learning-based wireless activity recognition. Due to com-

plexity of human activity, existing approaches extract signal fea-

tures, either statistical [14, 15, 23, 28, 30, 45, 49] or physical [6, 31, 34,

38, 39, 44, 51, 52] ones, and map them to discrete activities. The sta-

tistical methods treat the wireless signal as time series data, extract

its waveforms and distributions in both time and frequency domain

as fingerprints. E-eyes [45] is a pioneer work to use strength distri-

bution of commercial Wi-Fi signals and KNN to recognize human

activities. Niu et al. [30] uses signal waveforms for fine-grained

gesture recognition. The physical methods take a step further to

extract features with clear physical meanings. CARM [44] calcu-

lates power distribution of DFS components as learning features of

HMM model. WIMU [38] further segments DFS power profile for

multi-person activity recognition. However, due to fundamental

limits of domain dependencies of wireless signals, directly using

either statistical or physical features is infeasible to generalize to

different domains.

Tempts to adapt recognition schemes in various domains fall

into two categories: virtually generating features for target do-

mains [39, 40, 50, 53] and developing domain-independent fea-

tures [9, 20, 37]. In the former type, WiAG [39] derives translation

functions between CSIs from different domains, and generates vir-

tual training data accordingly. CrossSense [50] adopts the idea of

transfer learning, and proposes a roaming model to translate signal

features between domains. However, features generated by these

types of works are still domain-dependent, which require train-

ing of classifier for each individual domain, leading to a waste of

training efforts. In contrast, with the help of passive localization,

Widar3.0 directly uses domain-independent BVPs as features and

trains the classifier only once.

In the latter type, the idea of adversarial learning is usually

adopted to shift the task of separating gesture-related features from

domain-related ones. EI [20] incorporates an adversarial network

to obtain domain-independent features from CSI. However, cross-

domain learning methodologies require extra data samples from

the target domain, increasing data collection and training efforts.

Moreover, features generated by learning models are semantically

uninterpretable. In contrast, Widar3.0 explicitly extracts domain-

independent BVPs, and only needs a simply designed learning

model without the capability of cross-domain learning.

9 CONCLUSION

In this paper, we propose a Wi-Fi based zero-effort cross-domain

gesture recognition system. First, we model the quantitative re-

lation between complex gestures and CSI dynamics, and extract

velocity profiles of gestures in body coordinates, which are domain-

independent and act as unique indicators of gestures. Then, we

develop a one-fits-all deep learning model to fully exploit spatial-

temporal characteristics of BVP for gesture recognition. We im-

plement Widar3.0 on COTS Wi-Fi devices and evaluate it in real

environments. Experimental results show that Widar3.0 achieves

high recognition accuracy across different domain factors, specifi-

cally, 89.7%, 82.6%, 92.4% and 88.9% for user’s location, orientation,

environment and user diversity, respectively. Future work focuses

on applying Widar3.0 to fortify various sensing applications.
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