

Widar2.0 Passive Human Tracking with a Single Wi-Fi Link

Kun Qian¹, Chenshu Wu², Yi Zhang¹, Guidong Zhang¹, Zheng Yang¹, Yunhao Liu^{1,3}

> ¹Tsinghua University ²University of Maryland, College Park ³Michigan State University

Motivation

• Need for passive localization.

Smart Home

Health Monitoring

Intruder Detection

- RF radios VS. Cameras
 - Less privacy concern.
 - Larger surveillance area.
 - More ubiquitous deployment.

Motivation

• RF-based tracking thrives with prevail RF devices.

mmWave

FMCW Radar

Wi-Fi

Our Early Effort

• Widar – Tracking with Doppler Frequency Shifts.

- Widar requires,
 - DFS from Multiple links to compute velocity.
 - Trial and error to resolve direction ambiguity.
 - Costly search to spot the initial location.

MobiHoc '17

State of the Arts

	WiTrack[1]	WiDeo[2]	Widar[3]	D. Music[4]	IndTrack[5]	LiFS[6]
Technique	FMCW	FD Wi-Fi	Wi-Fi	Wi-Fi	Wi-Fi	Wi-Fi
Parameter	ToF	ToF, AoA	DFS	AoA	AoA, DFS	Attenuation
#Link	(1,1)/2	(1,1)/1	(1,2)/6	(2,2)/4	(1,2)/2	(4,7)/40
#Rx Ant.	1 x 2	4 x 1	6 x 1	3 x 2	3 x 2	-
Range	9 m	10 m	4 m	8 m	6 m	12 m
Accuracy	0.3 m	0.7 m	0.35 m	0.6 m	0.48 m	0.7 m

- Existing approaches either requires,
 - Single link but specialized hardware \rightarrow less ubiquitous
 - Commercial devices but multiple links \rightarrow less practical

Key Idea

- Can we achieve both ubiquity and practicality?
 - Yes! Using a single commercial Wi-Fi link.

• Widar2.0 – Tracking with ToF, AoA and DFS.

System Overview

CSI Model

• Due to multipath effect, CSI is modelled as:

$$H(t, f, \mathbf{s}) = \sum_{l=1}^{L} P_l(t, f, \mathbf{s}) + N(t, f, \mathbf{s}) = \sum_{l=1}^{L} \alpha_l(t, f, \mathbf{s}) e^{-j2\pi f \tau_l(t, f, \mathbf{s})} + N(t, f, s)$$

• The delay of the *l*-th path $\tau_l(i, j, k)$ is a combination of ToF τ_l , DFS f_{D_l} and AoA $\boldsymbol{\phi}_l = (\cos \phi_l, \sin \phi_l)^{\mathrm{T}}$:

Parameter Estimation

• The MLE of $\boldsymbol{\theta}_l = (\alpha_l, \tau_l, \phi_l, f_{D_l})$ for all paths, $\boldsymbol{\Theta} = (\boldsymbol{\theta}_l)_{l=1}^L$ is formulated as:

$$\Lambda(\Theta; H) = -\sum_{i,j,k} \left| H(i,j,k) - \sum_{l=1}^{L} P_l(i,j,k;\theta_l) \right|^2$$

- *L* # of multi path.
 - L should be larger than # of principle multi path.
 - L = 5, for sake of computation cost.
- Practical data input.
 - 3 antennas; 30 Subcarriers; 100 Packets (~0.1 s).

SAGE Algorithm

- SAGE algorithm is a general version of EM algorithm.
 Re-estimate only a subset of parameters in each iteration.
- E-Step.

$$\hat{p}_l(i,j,k;\widehat{\Theta}') = P_l(i,j,k;\hat{\theta}'_l) + \beta_l\left(H(i,j,k) - \sum_{l'=1}^L P_l(i,j,k;\hat{\theta}'_{l'})\right)$$

• M-Step.

$$\begin{aligned} \hat{\tau}_{l}^{\prime\prime} &= argmax_{\tau} \{ |z(\tau, \hat{\phi}_{l}^{\prime}, \hat{f}_{D_{l}}^{\prime}; \hat{p}_{l}(i, j, k; \widehat{\Theta}^{\prime})| \} \\ \hat{\phi}_{l}^{\prime\prime} &= argmax_{\phi} \{ |z(\hat{\tau}_{l}^{\prime\prime}, \phi, \hat{f}_{D_{l}}^{\prime}; \hat{p}_{l}(i, j, k; \widehat{\Theta}^{\prime})| \} \\ \hat{f}_{D_{l}}^{\prime\prime} &= argmax_{f_{D}} \{ |z(\hat{\tau}_{l}^{\prime\prime}, \hat{\phi}_{l}^{\prime\prime}, f_{D}; \hat{p}_{l}(i, j, k; \widehat{\Theta}^{\prime})| \} \\ \hat{\alpha}_{l}^{\prime\prime} &= \frac{z(\hat{\tau}_{l}^{\prime\prime}, \hat{\phi}_{l}^{\prime\prime}, \hat{f}_{D_{l}}^{\prime\prime}; \hat{p}_{l}(i, j, k; \widehat{\Theta}^{\prime})}{TFA} \\ z(\tau, \phi, f_{D}; P_{l}) &= \sum_{i, j, k} e^{2\pi\Delta f_{j}\tau_{l}} e^{2\pi f_{c}\Delta s_{k} \cdot \phi_{l}} e^{-2\pi f_{D_{l}}\Delta t_{i}} P_{l}(i, j, k) \end{aligned}$$

CSI Cleaning

• However, CSI contains not only channel response, but also various unknown phase noises:

$$\widetilde{H}(i,j,k) = H(i,j,k)e^{2\pi\left(\Delta f_{j}\epsilon_{t_{i}} + \Delta t_{i}\epsilon_{f}\right)}$$

[SpotFi'15]: The linear regression calibration fails.
Weak reflection from human body.

Conjugate Multiplication

- Our Solution: Conjugate multiplication between each antenna and chosen reference antenna. $C(i,j,k) = \widetilde{H}(i,j,k) * \widetilde{H}^*(i,j,k_0)$
- By classifying multipath into static signals P_s ($f_D = 0$) and dynamic signals P_d ($f_D \neq 0$), we have:

$$C(i, j, k) = \sum_{n_1, n_2 \in P_s} P_{n_1}(i, j, k) P_{n_2}^*(i, j, k_0) + \sum_{l \in P_d, n \in P_s} \frac{P_l(i, j, k) P_n^*(i, j, k_0)}{\text{Target term}} + \sum_{l_1, l_2 \in P_d} P_{l_1}(i, j, k) P_{l_2}^*(i, j, k_0)$$

• Phase structure is preserved: $P_l(i, j, k)P_n^*(i, j, k_0) = \alpha_l \alpha_n^* e^{-2\pi\Delta f_j(\tau_l - \tau_n) - 2\pi f_c \Delta s_k \cdot \phi_l + 2\pi f_{D_l} \Delta t_i}$

Path Matching

• Multipath parameters are cluttered together.

Example of parameter estimates.

• Our approach: Graph-based Path Matching (GPM).

Range Refinement

- Range estimation with ToF or DFS
 - ToF \rightarrow coarse estimate of absolute range.
 - DFS \rightarrow fine estimate of change rate of range (WiDar).
- We adopt Kalman smoother to refine range with both ToF and DFS.

Experiment

- Implementation
 - Thinkpad laptops with Intel 5300 NIC.
- Setup
 - 3 scenarios: classroom, corridor, office.

• Tracking samples

Overall Performance

Overall Localization Accuracy

Performance Comparison

- Widar2.0 achieves median tracking errors of 0.75 m and 0.63 m, with one and two links respectively.
- Widar2.0 outperforms [Dynamic-Music'16] , and has a shorter error tail than [IndoTrack'17].

Impact of Sampling Rate

- Widar2.0 works even with 250 pkts/sec.
 - The minimum rate is 200 pkts/sec, for uniqueness of DFS.
- Corresponding per second processing time is 0.7 s.
 - Real-time tracking with Widar2.0.

Conclusion

- From Widar1.0 to Widar2.0
 - From 2 links to 1 single link.
 - A unified model of ToF, AoA and DFS.
 - CSI calibration for weak reflection path.
 - Robust parameter matching and refinement for localization.

- Decimeter-level passive tracking system.
 - Median location error of 75cm with one single link.
 - In a larger 6 m x 5 m area.

Thanks!

Kun Qian Tsinghua University

qiank10@gmail.com http://tns.thss.tsinghua.edu.cn/~qiankun/

Overall Performance

- Contribution of individual modules
 - Path matching 0.09 m
 - Range refinement 0.13 m

Impact of Walking Diversity

- Tracking error reduces with more links and larger incident angles between link and walking direction.
- Widar2.0 avoids accumulation error with estimation of absolute ToF.

Impact of Context Diversity

- Tracking error slightly increases with tracking area.
 - Weaker reflection.
 - Smaller DFS.
- Consistent accuracy is achieved with multiple testers.