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ABSTRACT

This paper presents Widar2.0, the first WiFi-based system that

enables passive human localization and tracking using a single

link on commodity off-the-shelf devices. Previous works based

on either specialized or commercial hardware all require multiple

links, preventing their wide adoption in scenarios like homes where

typically only one single AP is installed. The key insight underlying

Widar2.0 to circumvent the use of multiple links is to leverage

multi-dimensional signal parameters from one single link. To this

end, we build a unified model accounting for Angle-of-Arrival,

Time-of-Flight, and Doppler shifts together and devise an efficient

algorithm for their joint estimation. We then design a pipeline

to translate the erroneous raw parameters into precise locations,

which first finds parameters corresponding to the reflections of

interests, then refines range estimates, and ultimately outputs target

locations. Our implementation and evaluation on commodity WiFi

devices demonstrate that Widar2.0 achieves better or comparable

performance to state-of-the-art localization systems, which either

use specialized hardwares or require 2 to 40 Wi-Fi links.

CCS CONCEPTS

•Human-centered computing→Ubiquitous andmobile com-

puting;
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1 INTRODUCTION

Recent years have witnessed the ever-fast development of WiFi-

based localization and tracking. Fine-grained localization has been

achieved with sub-meter accuracy and applicability in non-line-of-

sight (NLOS) scenarios [13, 24, 29, 39]. Yet these systems mostly

require instrumentation of human body, meaning that some wire-

less device is carried by a person in order to be localized. This limits
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Figure 1: High-level design of Widar2.0. One receiver (e.g.

laptop) overhears packet transmission from an AP and cal-

culates ToF, AoA and DFS of the reflection path, for location

estimate.

their applications in important scenarios like elderly care, security

monitoring, retail analytics, etc. As such, device-free passive local-

ization without any device attached to the user attracts increasing

research interests recently [3, 5, 16, 17].

Techniques based on visible light [44] and depth imaging [1]

have been proposed and commercialized, yet they only track mo-

tions within the vicinity of directional LOS. In contrast, WiFi-based

approaches become more popular thanks to the unique advantages

ofWiFi in its ubiquitous deployment and non-line-of-sight coverage.

Generally, passive WiFi tracking works by capturing and analyzing

the signals reflected off human body and thus imprinted with a

signature of the body motions. Building a passive tracking system,

however, is difficult because reflected signals are orders of magni-

tude weaker than directly received powers and are superimposed

with reflections off other objects at the receiver.

Early attempts are devoted to radio tomography [41] and map-

ping [6] based on coarse-grained RSS or fine-grained CSI, which

involve a dense deployment of cooperative WiFi devices and labor-

intensive fingerprinting for localization and thus are deficient in

practical applicability and accuracy. Recent innovations circumvent

the burdensome deployment and training with geometric inter-

pretation of channel parameters such as angle-of-arrival (AoA),

Time-of-Flight (ToF), Doppler frequency shift (DFS). In practice, it

is a challenging task to precisely estimate any of these parameters

due to fundamental limits in frequency bandwidth and antenna

number of commercial WiFi as well as noisy channels. To achieve

localization in complicated multipath environments indoors, previ-

ous works either rely on specialized hardware or software-defined

radios [2, 3, 13], rendering them not ubiquitously applicable, or
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Table 1: A comparison of state-of-the-art works for passive WiFi tracking

Properties WiTrack [3] WiDeo [11] Widar [21] Dy. Music [16] IndoTrack [17] LiFS [32] Widar2.0

Technique FMCW FD Wi-Fi Wi-Fi Wi-Fi Wi-Fi Wi-Fi Wi-Fi

Parameter ToF ToF, AoA DFS AoA AoA, DFS Attenuation All

#(Tx,Rx)/Link (1, 1)/2 (1, 1)/1 (1, 2)/61 (2, 2)/4 (1, 2)/3 (4, 7)/40 (1, 1)/1

#Rx Antenna 1×2 4×1 6×1 3×2 3×3 - 3×1

Tracking range 9 m 10 m 4 m 8 m 6 m 12 m 8 m

Accuracy 0.3 m 0.7 m 0.35 m 0.6 m 0.48 m 0.7 m 0.75 m

require multiple links [16, 32], making them less favorable for prac-

tical situations especially in smart home where people would like

not to deploy many devices for sensing. Table 1 compares recent

RF-based passive tracking systems from aspects of deployment cost

and performance. The latest approaches still require at least two

links with one AP and two clients for localization and tracking.

As an early attempt of passive tracking, Widar [21] aggregrates

DFS of CSIs from multiple links, but leaves richful features within

CSI unaddressed. In this paper, we present a subsequent work -

Widar2.0-, aimed at passive human tracking with only a single

pair of COTS WiFi devices (e.g., one access point plus one client),

without support from any additional infrastructure or inertial sen-

sors. To avoid use of multiple links, we resort to leverage multi-

dimensional parameters including AoA, ToF, DFS and attenuation

from one single link (Figure 1). However, it is non-trivial to gain

multidimensional parameter estimation from noisy CSI measure-

ments and translate imperfect parameter estimates into precise

locations. In particular, great challenges need to be addressed: How

to simultaneously and jointly estimate multiple parameters with

limited bandwidth and small antenna array (typically only three on

COTS WiFi devices)? How to clean unpredictable phase noises con-

tained in CSI measurements? How to derive fine-grained locations

from the low-resolution parameters of a single link, which could be

very noisy and erroneous? We overcome all these challenges and

propose Widar2.0, a system that realizes the above goal.

First, we build a unified model for simultaneous and joint estima-

tion of multiple parameters including AoA, ToF, DFS, and attenua-

tion. Most of previous works exploit only signal power and DFS for

motion sensing [17, 21, 32] since they are the easiest to accurately

obtain on commodity off-the-shelf (COTS) WiFi, compared to AoA

that is fundamentally limited by antenna number and ToF limited

by frequency bandwidth. While deriving any single parameter is

challenging enough, we aim to exploit multiple parameters, which

will provide multi-dimensional orthogonal and complimentary in-

formation, allowing an opportunity to avoid the need of multiple

links for location tracking. Towards this goal, we devise a model

involving all parameters of interests to quantify the relationships

between user motion and CSI, formulate the problem of multiple

parameter estimation as a maximum likelihood estimation problem,

and employ an Expectation Maximization (EM) solver to efficiently

derive accurate estimates.

Second, we eliminate random phase noises between packets

via conjugate multiplication of CSI from collocated antennas on

the same radio (e.g., the receiver). It is well-known that CSI mea-

surements on COTS WiFi devices suffer from severe phase noises

stemming from timing offset and carrier frequency offset. To handle

the noises, previous works proposed to apply linear fitting over

multiple subcarriers for calibration [13, 25]. However, this method

is not applicable in passive tracking because reflection signals are

orders of magnitudes weaker than static signals, and the residual

error after calibration is still strong enough to obfuscate reflection

signals of interest. In contrast, we propose a novel method using

the conjugate multiplication of CSI measurements, which renders

an offset-free form of CSI. The rationale lies in that a pair of collo-

cated antennas on one radio device undergo identical phase noises

from channel, which can thus be removed out by conjugate multi-

plication. The resulted conjugate multiplied version of CSI is not

polluted with phase noises while can still be leveraged for multiple

parameter estimation using the proposed algorithm.

Third, we propose novel algorithms to derive precise locations

from erroneous parameter estimates. Our parameter algorithm

outputs cluttering parameters of multiple reflections. To locate

the target of interest, we devise a novel graph-based algorithm to

accurately identify the parameters corresponding to the target’s

reflection from cluttering multipath parameters. In principle, track-

ing can then be simply enabled by geometric deduction based on

AoA and ranges derived from ToF. However, due to fundamental

limits in bandwidth, ranges obtained from inaccurate ToF are not

accurate enough for fine-grained tracking. Potential range preci-

sion gains lie in combining ToF estimates with relative distance

changes calculated from DFS. By doing this, we improve the range

estimation resolution from 0.3 m to 0.05 m, underlying the solid

foundation for precise localization.

We have implemented Widar2.0 on commodity WiFi devices,

i.e., one single antenna AP as transmitter and a laptop with three

antennas as receiver, both equipped with Intel 5300 NICs for CSI

collection. We evaluate Widar2.0 in three different indoor scenarios

and compare it with two state-of-the-art methods namely IndoTrack

[17] and DynamicMusic [16]. Experimental results show that, using

a single WiFi link, Widar2.0 achieves a median accuracy of about

0.75 m in a 6 m × 5 m tracking area, better than DynamicMusic and

comparable with IndoTrack. We believe Widar2.0 brings passive

tracking to practical applications especially in scenarios like smart

homes and small stores where typically only one AP would be

installed and mobile environments where one can rapidly set up a

tracking system with simply a laptop and a smartphone, without

any fixed infrastructure.

In summary, our key contribution is the first device-free track-

ing system Widar2.0 that works with only one single WiFi link.

1Widar puts Rx antennas distantly separate and treats each antenna as an individual
link.
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Figure 2: System overview of Widar2.0.

Widar2.0 enables a single COTS WiFi device connected to an ex-

isting AP to passively localize a moving target at sub-meter level

accuracy without any extra hardware support, be it additional in-

frastructure or inertial sensors. Widar2.0 also contributes novel

multiple signal parameters estimation and fusion algorithms, which

underlie precise passive localization with a single link.

The rest of the paper is organized as follows. First an overview

is presented in Section 2. We introduce multiple signal parameter

estimation in Section 3 and describe tracking in Section 4. Experi-

ments and evaluation are provided in Section 5. We review related

works in Section 7 and conclude in Section 8.

2 OVERVIEW

The core of Widar2.0 is to enable sub-meter level passive track-

ing of moving human by using only a single WiFi link on COTS

devices. A key insight underlying the possibility is to seek for mul-

tiple signal parameters from a single link rather than using single

parameter from multiple links. As shown in Figure 2, we achieve

this in Widar2.0 by two key modules, namely CSI-Motion module

and Motion Tracking module.

The CSI-Motion module conducts joint multiple parameters es-

timation of multipath signals from noisy CSIs. Upon receiving

CSI measurements, Widar2.0 first cleans them. The objectives of

CSI cleaning are two-fold: 1) eliminating random CSI phase noises

caused by asynchronous transceivers, and 2) surpassing strong sig-

nals from static paths, e.g. the LoS path, and amplifying signals

reflected by moving target. Thereafter, Widar2.0 applies the pro-

posed parameter estimation algorithm to obtain multidimensional

parameters (ToF, AoA, DFS, and attenuation) of multipath signals.

TheMotion-Trackingmodule calculates the target locations from

multiple signal parameters estimates. First, Widar2.0 identifies pa-

rameters of interest corresponding to the signal reflected by the

moving target from cluttering estimates via path matching module.

Then, the ToF and DFS are fused through a Kalman Smoother to

refine distance estimates in range refinement module. Finally, the

estimated distance and AoA are fed into the localization framework

to derive the location of the moving target.

In principle, Widar2.0 only needs one single pair of Wi-Fi trans-

mitter and receiver (e.g., an AP and a client). Nevertheless, in case

more receivers are available, further accuracy gains would be ob-

tained by combining the location estimations of different receivers.

Our design enables lightweight and rapid deployment of passive

tracking systems in ubiquitous environments. In particular, not only

in traditional environments like homes and offices, Widar2.0 can

also be easily deployed in mobile scenarios with, e.g., a smartphone

set as AP and a laptop (equipped with three antennas) as a receiver.

Such capability opens up passive tracking to new applications for

emergency use or interactive exergames anywhere.

3 MOTION IN CSI

When a target moves, all parameters (i.e. ToF, AoA, DFS and at-

tenuation) of the signal reflected by the target are likely to change.

However, as shown in Table 1, existing approaches using commer-

cial Wi-Fi only explore one or two parameters but fail to capture

all information of target movements, therefore requiring multiple

links for tracking.

A key to circumvent the use of multiple links resorts to inferring

multiple parameters from a single link. While DFS and attenuation

are relatively easy to obtain on CSI, it becomes much more difficult

to estimate ToF and AoA, not to mention all of them simultaneously.

In this section, we attempt to jointly derive all of these parameters

from CSI measurements, accurately and efficiently. We achieve this

by three key components: 1) a novel unified CSI model (§3.1) and

its a maximum likelihood formulation, coming together with an

efficient solving algorithm (§3.2) for multidimensional parameter

estimation; 2) a CSI cleaning technique that removes random phase

noises caused by timing offset and carrier frequency offset (§3.3).

3.1 CSI-Motion Model

The wireless channel, due to multipath effect, has the following

measurement at time t , frequency f and sensor (antenna) s:

H (t , f , s) =
L∑
l=1

Pl (t , f , s) + N (t , f , s)

�
L∑
l=1

αl (t , f , s)e
−j2π f τl (t,f ,s ) + N (t , f , s)

(1)

where L is the total number of multipath components, Pl is the
signal of the l-th path. αl and τl are the complex attenuation factor

and propagation delay of the l-th path respectively.N is the complex

white Gaussian noise capturing the background noise.

Wi-Fi NICs measure channel discretely in time (packet), fre-

quency (subcarrier) and space (sensor) [10]. Denoting the discrete

measurement at the i-th packet, j-th subcarrier and k-th sensor as

H (i, j,k), and takingH (0, 0, 0) as reference, the signal phase (divided

by 2π ) of the l-path in H (i, j,k) is transformed as:

f τl (i, j,k) = (fc + Δfj )(τl −
fDl

fj
Δti + Δsk · ϕl )

≈ fcτl + Δfjτl + fcΔsk · ϕl − fDl
Δti

(2)
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where fc is the carrier frequency of the channel; Δti , Δfj , Δsk are

differences of time, frequency and spatial position betweenH (i, j,k)
and H (0, 0, 0); And τl , ϕl and fDl

are the ToF, (unit direction vector

of) AoA and DFS of the l-th path inH (0, 0, 0) respectively. The term

−
fDl
f
Δti reflects the change of ToF caused by target movement,

and the term Δsk · ϕl is the ToF difference between sensors. The

second-order terms are omitted, since they are orders of magnitudes

smaller than the linear and constant terms.

Within short time window, narrow bandwidth and small aper-

ture size, the signal attenuation αl is assumed to be constant for

all measurements. In addition, the term fcτl in Equation 2 is the

same for all measurements and can be merged into the complex

attenuation αl , in the view of parameter estimate. Denoting the

signal parameter of the l-th path as θl = (αl ,τl ,ϕl , fDl
), the first

step of tracking is to estimate the multidimensional parameter θ of

the signal reflected by the target.

3.2 Joint Multiple Parameter Estimation

We formulate the problem of joint multiple parameter estimation as

a maximum likelihood estimation (MLE) problem and designs algo-

rithm for parameter estimate with CSI. Our approach is fundamen-

tally different from previous algorithms like MUSIC and FFT. For

brevity, we denotem = (i, j,k), i = 0, 1, · · · ,T −1, j = 0, 1, · · · , F−1,
k = 0, 1, · · · , S − 1, as the hyper-domain for CSI measurement

H (i, j,k), where T , F , S are the number of packets, subcarriers and

sensors respectively.

Given measurement observation h(m), our objective is to obtain

the MLE of multidimensional multipath signal parameters of Θ =
(θl )

L
l=1

. The log-likelihood function of Θ is [19]:

Λ(Θ;h) = −
∑
m

|h(m) −

L∑
l=1

Pl (m;θl )|
2 (3)

And the MLE of Θ is the solution that maximizes Λ:

Θ̂ML = argmaxΘ{Λ(Θ;h)} (4)

Obviously, the function is non-linear and no closed-form solution

exists. Furthermore, the direct search of ΘML is computationally

prohibitive due to the high dimension of Θ (i.e. 4L) for large L.
In order to solve the problem efficiently, we apply the Space

Alternating Generalized Expectation Maximization (SAGE) algo-

rithm [8] that reduces the overall search space. The SAGE algorithm

is an extension of the Expectation Maximization (EM) algorithm [7],

where each iteration of the algorithm only re-estimates a subset of

the components of Θ while keeping the estimations of the other

components fixed. Thus, we can divide the estimate of Θ into mul-

tiple estimates of individual parameters.

Parameters of each path are optimized in turn. Specifically, for

the l-th path, the expectation step is to decompose the CSI and

calculate the signal Pl of the l-th path:

P̂l (m; Θ̂′) = Pl (m; θ̂ ′
l
) + βl

(
h(m) −

L∑
l ′=1

Pl (m; θ̂ ′
l ′
)
)

(5)

where Θ̂
′
is the parameter estimated in the last iteration. βl is a

non-negative coefficient that controls the convergence rate of the

algorithm, and is set as 1 by default.

Algorithm 1 Parameter estimation algorithm

Input: h(m)

Output: Θ = (θl )
L
l=1

1: Initialization. Θ = 0;

2: while | |Θ′′ − Θ′| | > ϵ do

3: for l = 1 to L do

4: Expectation Step, Equation 5

5: Maximization Step, Equation 6

6: end for

7: end while

Then, the maximization step is carried out sequentially as:

τ̂ ′′
l
= argmaxτ {|z(τ , ϕ̂

′
l
, f̂ ′Dl

; P̂l (m; Θ̂
′
))|}

ϕ̂ ′′
l
= argmaxϕ {|z(τ̂

′′
l
,ϕ, f̂ ′Dl

; P̂l (m; Θ̂
′
))|}

f̂ ′′Dl
= argmaxfD {|z(τ̂

′′
l
, ϕ̂ ′′

l
, fD ; P̂l (m; Θ̂

′
))|}

α̂ ′′
l
=

z(τ̂ ′′
l
, ϕ̂ ′′

l
, f̂ ′′
Dl

; P̂l (m; Θ̂
′
))

TFA

(6)

where

z(τ ,ϕ, fD ; Pl ) =
∑
m

e2πΔfjτl e2π fcΔsk ·ϕl e−2π fDl Δti Pl (m) (7)

Since the MLE of αl can be derived in a closed form as a function

of τl , ϕl and fDl
, it is calculated at the end of each iteration.

Algorithm 1 summarizes the parameter estimation algorithm.

Besides the main E-step and M-step, Θ is initialized as 0, and the

iteration ends when the estimates of Θ converge, namely, the dif-

ference between successive estimations is within a pre-defined

threshold ϵ .

3.3 CSI Cleaning

Unfortunately, the above algorithm is not directly applicable to

CSI measurements on commercial WiFi due to their significant

noises. As the original purpose of CSI is to equalize channel for

data demodulation, the CSI contains not only the channel response,

but also various phase noises caused by asynchronization between

transceivers and hardware imperfection. Specifically, the erroneous

version of CSI measurement H (m) is:

H̃ (m) = H (m)e2π (Δfjϵti +Δtiϵf )+ζsk (8)

where ϵti and ϵf are the timing offset (TO) and carrier frequency

offset (CFO) between transceivers, and ζsk is the initial phase of

the receiver sensor. Initial phases ζsk are constant every time the

receiver starts up, and can thus be manually calibrated [39]. In con-

trast, ϵti and ϵf vary between packets, and need to be estimated per

packet. Thus, it is impossible to directly estimate signal parameters

from raw CSIs.

Observing that the phase noises are linear across subcarriers,

SpotFi [13] proposes a ToF sanitization algorithm using linear fitting

method. However, it is inapplicable to passive tracking with single

device, where the problems are two-fold.

First, SpotFi localizes active devices and only needs to estimate

the LoS signal between transceivers, which is usually much stronger

than human-induced reflections. Figure 3 shows the strength ratio

between the reflection signal and the static LoS signal from experi-

ment. Specifically, the transmitter and the receiver are placed 2 m
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Figure 3: Power ratio between signal re-

flected by moving human and static sig-

nal.

Figure 4: Spectrograms of CSI with differ-

ent sanitization methods. (a) SpotFi; (b)

Widar2.0.

Figure 5: Pseudo-spectrum of joint AoA

and ToF estimations with SpotFi.

apart, and a person walks away from the link, from 1 m to 6 m. As

shown, the average ratio is smaller than −5 dB and decays expo-

nentially with the increase of the distance between the person and

the link. As a result, the residue of noises after sanitization is still

comparable to the reflection signal, leading to severe obfuscation.

To validate the concern, we further let a person walk away from and

then back towards a Wi-Fi link, which theoretically causes negative

DFS first and then positive DFS. Figure 4a shows the normalized

spectrograms of CSIs calibrated by SpotFi. Obviously, the reflection

signal, as indicated by DFS, is highly interfered by phase noises.

Second, SpotFi’s ToF sanitization algorithm removes the absolute

ToF of the LoS signal, since the phases contributed by ToF are also

linear across subcarriers (recall the term −2πΔfjτl in Equation 2).

As a result, the absolute ToF of any path cannot be obtained, and

the target cannot be localized with only AoA of single device. As an

example, we simulate multipath signal with four paths in AWGN

channel, where ToFs of the four paths are 50, 90, 120 and 170 ns

respectively. Figure 5 shows the corresponding pseudo-spectrum of

the signal. While SpotFi accurately captures the difference of ToFs

between paths, it fails to obtain the absolute ToF of the target LoS

path.

Instead, to filter out irrelevant noises and retain only channel

responses of interest, we carefully analyze the structure of noisy

CSI and propose the CSI Cleaning algorithm. The basis of the

algorithm is that CSI phase noises caused by TO and CFO only

vary in time and frequency, but not space. That is, all sensors of the

same NIC experience the same unknown phase noises at the same

time. Thus, Widar2.0 selects a sensor as the reference sensor (e.g.

k0-th sensor), and calculates the conjugate multiplications C(m),

between CSIs of each sensor and the reference sensor:

C(m) = H̃ (m) ∗ H̃∗(m0) = H (m) ∗ H∗(m0) (9)

wherem0 = (i, j,k0).
By classifying multipath signals into static (fD = 0) group Ps

and dynamic (fD � 0) group Pd , the conjugate multiplication can

be divided as:

C(m) =
∑

n1,n2∈Ps

Pn1 (m)P∗n2
(m0)

+
∑

l ∈Pd ,n∈Ps

Pl (m)P∗n (m0) + Pn (m)P∗
l
(m0)

+
∑

l1,l2∈Pd

Pl1 (m) ∗ P∗
l2
(m0)

(10)

On one hand, since static signals are constant over time, the

first summation term in Equation 10 can be removed via high-pass

filter. On the other hand, since static signals are much stronger than

signals reflected by moving objects, the third summation term is

orders weaker than the first two terms, and can be omitted.

As for the second summation term, for any l ∈ Pd and n ∈ Ps ,
according to Equation 1 and 2, we have:

Pl (m)P∗n (m0) = αlα
∗
ne

−2πΔfj (τl−τn )−2π fcΔsk ·ϕl+2π fDl Δti

Pn (m)P∗
l
(m0) = αnα

∗
l
e−2πΔfj (τn−τl )−2π fcΔsk ·ϕn−2π fDl Δti

(11)

Note that we omit the term e−2π fcΔsk0 ·ϕn in P
(k )

l
P
(k0)∗
n and the

term e−2π fcΔsk0 ·ϕl in P
(k )
n P

(k0)∗

l
, which are the same for all mea-

surements and do not impact parameter estimation.

The first term Pl (m)P∗n (m0) has the same phase structure as

Equation 2, except that the ToF is (τl − τn ). Suppose Pl is the tar-
get reflection path and Pn is the LoS path, since transceivers are

fixed and their locations are available, the ToF τn can be directly

calculated from the link distance, and the ToF τl can further be

derived.

However, conjugate multiplication produces the by-product term

Pn (m)P∗
l
(m0), which has fake ToF, AoA and DFS as (τn−τl ),ϕn and

−fDl
respectively. To eliminate the by-product term, we coarsely

remove the static responses by subtracting a constant value β from

CSI amplitudes of all sensors, and adding a constant value γ to CSI

amplitudes of the reference sensor, as in [17]. Whenm �m0, we

have

|Pn (m)P∗
l
(m0)| = (|αn | − β)|αl |

<< |αl |(|αn | + γ ) = |Pl (m)P∗n (m0)|
(12)

Thus, the by-product term can be omitted. As comparison, Figure 4b

shows the spectrogram of CSIs calibrated by our conjugate multi-

plication based method, where DFS is accurately recovered from

noisy CSI. In addition, even if the by-product term inC(m0) cannot

be mitigated, we still keep C(m0) in order for sufficient number

of antennas for AoA estimation. C(m0) can be viewed as the sum

two symmetric multipath terms and also applies to the parameter

estimation algorithm.

The method of conjugate multiplication of CSIs for phase cal-

ibration is first proposed in WiDance [22], and then used in In-

doTrack [17] for tracking. However, these works only focus on

estimate of DFS, while Widar2.0 addresses all signal parameters
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Figure 6: Examples of multipath parameter estimations.
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Figure 7: Examples of path matching.

for tracking. With amplitude adjustment and high-pass filtering,

the conjugate multiplication C(m) only contains significant terms

Pl (m)P∗n (m0), where l ∈ Pd and n ∈ Ps , and thus has the same

structure as CSI measurements H (m). Then, we apply the parame-

ter estimation algorithm (Algorithm 1) to C(m) to estimate signal

parameters. Specifically, Widar2.0 divides CSI collection to 0.1 s

segments, where signal parameters are assumed as static. It then ap-

plies the parameter estimate algorithm to each segment and obtain

an estimation instance of signal parameters.

4 LOCALIZATION

While the parameter estimation algorithm yields multidimensional

signal parameters from the cleaned CSI, these estimates are typi-

cally erroneous due to multipath effects and low resolution. More

precise parameters are desired for accurate tracking. Hence tn this

section, we propose to identify the parameters corresponding to

the reflection paths of interests from the cluttering estimates (§4.1)

and improve the resolution by leveraging parameters in orthogonal

dimensions (§4.2). After that, we present a framework (§4.3) based

on ToF and distance estimated from single link to localize the target.

4.1 Path Matching

The output of the parameter estimate algorithm consists of pa-

rameters of multipath signals. A screening procedure is needed

to identify parameters of interests. However, it is not straightfor-

ward to select parameters of target’s reflection, since all multipath

parameters are cluttering together. For example, Figure 6 shows

typical multipath signal parameters of a trace, where the target

first walks away from the link and then back to the link. For better

illustration, we weight the color of the parameters according to

attenuations of corresponding paths. While the target parameters

can be indistinctly spotted from the scatter plots, they are confused

with parameters of other paths and noises. For example, Figure 7b

and 7c show the parameter corresponding to the by-product term

in Equation 11. Furthermore, since we filter out most static sig-

nals, the remaining part may contain more significant noises, as

indicated by spreading outliers.

To select target parameters out of cluttering estimations,WiDeo [11]

proposes to use Hungarian algorithm [15] to match parameters of

adjacent estimations. However, this algorithm cannot be directly

applied toWidar2.0, as CSIs from COTSWi-Fi devices contain much

more noises than signals from backscatters with self-interference

cancellation. Figure 7 shows the matching results (blue dash lines)

of only using Hungarian algorithm. The results suffer from noises

severely, and may lead to large tracking errors.

In order to overcome noises in the cluttering multipath parame-

ters, we propose a graph-based path matching (GPM) algorithm that

simultaneously matches successive multiple segments. Formally,

as shown in Figure 8, suppose estimations of N CSI segments are

considered and each estimation contains parameters of L paths, we

build a weighted N -partite graph G = (V ,E,W ), where vi j ∈ V
represents the parameters of j-th path in the i-th estimation θi j ;

e
i2 j2
i1 j1

∈ E represents the edge betweenvi1 j1 andvi2 j2 ; andw
i2 j2
i1 j1

∈W

represents the weight of the edge e
i2 j2
i1 j1

. The weight is defined as the
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Figure 8: Principle of graph-based path

matching.
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distance between parameters:

w
i2 j2
i1 j1
= w

i1 j1
i2 j2
= | |cT (θi1 j1 − θi2 j2 )| | (13)

where c is the vector of coefficients that normalize different param-

eters ToF, AoA, DFS and attenuation.

We denote x
i2 j2
i1 j1

as binary variable that indicates whether the

edge e
i2 j2
i1 j1

is selected for matching. Thus, the objective function is:

xopt = argminxw
T x (14)

wherew and x are vectorized weights and variables respectively.

To make sure that selected edges forms L N -order complete

graphs, several constraints should be fulfilled.

(i) Edges within the i-th part must not be selected:

x
i j2
i j1
= 0 (15)

(ii) Number of selected edges in the i1-th part must be equal to

the number of vertices in the rest parts:

L∑
j1=1

N∑
i2=1,i2�i1

L∑
j2=1

x
i2 j2
i1 j1
= L(N − 1) (16)

(iii) Number of selected edges between any vertex vi1 j1 and ver-

tices in the i2-th part must be no more than 1:

L∑
j2=1

x
i2 j2
i1 j1

≤ 1 (17)

(iv) If e
i2 j2
i1 j1

and e
i3 j3
i2 j2

are selected, then e
i3 j3
i1 j1

must be selected:

x
i2 j2
i1 j1
+ x

i3 j3
i2 j2

≤ 1 + x
i3 j3
i1 j1

(18)

This constraint is to ensure that selected edges form complete

graphs.

The constraints in Equation 15, 16, 17, 18, together with the

objective function in Equation 13, form a binary integer program

(BIP) problem, and can be solved via BIP solvers like YALMIP [18].

Since BIP is NP-complete, and signal parameters are likely to

change with time, we only calculate the optimal matching of a

small group of estimations (e.g. N = 6), and concatenate matchings

with boundary estimations of groups. Specifically, given successive

2M+1 estimationsΘ1,Θ2, · · · ,Θ2M+1 (e.g.M = 5), we selectM+1
estimations with odd indices and search their optimal matching

with BIP. Then, we match the rest estimations (with even indices)

with their adjacent estimations using Hungarian algorithm. After

completing path matching in one group, we calculate the median

parameters of paths and use it as the new estimation Θ1 for path

matching in next group. Figure 7 shows the matching results (red

solid lines) of Widar2.0, which only has fewer outliers. To remove

the outliers, Hampel filter is further applied to the matching result.

4.2 Range Refinement

Theoretically,the relative range between the reflection path and

the LoS path can be calculated by multiplying estimated ToF with

the speed of light. However, the estimated range may suffer from

strong noises and low resolution of ToF. Specifically, we adopt a

resolution of 1 ns for ToF estimation, which corresponds to that of

0.3 m for range. Thus, a ToF error of a few ns may lead to meters

of ranging error. Figure 9 shows the range calculated directly from

ToF. Unfortunately, the range estimation is fluctuating and thus

cannot be used for localization.

To refine range estimation, we combine absolute yet coarse-

grained ToF and fine-grained yet relative DFS, and propose an

efficient smoothing algorithm. Specifically, DFS is equivalent to the

change rate of path ranging v [21]:

fD = −
v

λ
(19)

where λ is the wavelength of the signal, and is about 0.05 m for 5.8

GHz Wi-Fi signal. Thus, a resolution of 1 Hz for DFS estimation

corresponds to that of only 0.05 m/s for path range change rate.

Based on this observation, we adopt a Kalman Smoother (KS)

to refine ranges from ToF estimations with the change rates of

path range from DFS estimations. The process noise and obser-

vation noise are initialized as the variance of the first 2 seconds

data respectively. Figure 9 shows the ranges refined by Kalman

Smoother, which is smoother than the raw estimation. With the

relative range, we can further derive the absolute range of reflection

path, by adding the constant distance between the transmitter and

the receiver.

4.3 Localization Model

Finally, Widar2.0 localizes targets with derived range and AoA. Fig-

ure 10 shows the localization framework. Without loss of generality,

we denote the locations of the transmitter, receiver and target as

o = (0, 0), lr = (xr ,yr ) and l = (x ,y) respectively. The AoA of LoS

signal, ϕTx , can be calculated from the original CSI measurements

using CSI-SAGE algorithm. Further, the orientation of the receiver

array ψr can be calculated from ϕTx and (xr ,yr ). Denoting the

range and AoA of the reflection path as dTar and ϕTar respectively,
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Figure 12: Examples of tracking results of Widar2.0.

we have the following equation system:{ √
x2 + y2 +

√
(x − xr )2 + (y − yr )2 = dTar

(y − yr ) cos(ψr − ϕTar ) = (x − xr ) sin(ψr − ϕTar )
(20)

Assuming that the tracking area is at one side of the link, the

unique solution can be derived from the equation system, which is

the intersection of the semi-ellipse determined by range and the

semi-line determined by AoA. Suppose the receiver is on the X
boundary of the tracking area, the close-form solution of Equa-

tion 20 is:{
x = 1

2

d2
Tar
+2srdTar xr secφ+x

2
r sec

2φ−(xr tanφ−yr )
2

xr+yr tanφ+srdTar secφ

y = tanφ(x − xr ) + yr
(21)

where φ = ψr −ϕTar , and sr = sgn{(x − xr ) cosφ}. Since we know
the boundary of tracking area, the sign sr can be calculated by

replacing x with an arbitrary X value within the tracking range.

The solution for receiver on the Y boundary is dual to the solution

in Equation 21, and is omitted for brevity.

In practice, there may exist multiple receivers around the moni-

toring area. To fully utilize indoor Wi-Fi infrastructure, we further

fuse the location results from multiple R receivers:

l =
R∑
i=1

uili (22)

where ui is the weight for the location estimation of the i-th re-

ceiver. Observing that larger DFS fD leads to more accurate location

estimation, we assign the weights heuristically:

ui =
1 + | fDi

|

R +
∑R
i=1 | fDi

|
(23)

Note that this integration step is only for practical consideration of

further improvements in case more than one receivers are available.

Widar2.0 itself works gracefully with only one single link.

5 EVALUATION

5.1 Experiment Methodology

Implementation. We implement Widar2.0 using a pair of off-the-

shelf laptops equipped with Intel 5300 NIC. The transmitter has one

antenna and broadcasts packets into the air. The receiver has three

antennas, which forms a uniform linear array. Linux 802.11n CSI

Tool [10] is installed in devices to collect CSImeasurements. Devices

are set to work with monitor mode, on channel 165 at 5.825 GHz.

The transmission rate of packets is set to 1000 Hz. The processing

computer uses a Intel i7- 7700 3.6GHz CPU, and processes CSI data

using MATLAB.

Evaluation setup.To fully evaluate the performance ofWidar2.0,

we conduct experiments in 3 indoor environments: a large empty

classroom, a small office room with various furnitures and a narrow

corridor. Figure 11 shows the deployment of devices and track-

ing areas in different scenarios. In particular, in the scenario of

classroom, we deploy an additional receiver to demonstrate the

performance of Widar2.0 with existence of multiple devices. The

two links are in orthogonal with each other. In total, 6 volunteers (4

males and 2 females) participate in the experiment, and walk along

different shapes of trajectories such as line, rectangular, circle, etc.

Figure 12 show examples of tracking results of Widar2.0. Code and

data samples are available at our official website 2.

2http://tns.thss.tsinghua.edu.cn/wifiradar/Widar2.0Project.zip
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Figure 13: Overall localization accuracy.
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Figure 15: Benefits of individual modules.

Ground truth.We obtain ground truth via video-based tracking

solution. Specifically, a digital camera is installed to capture walking

videos. Meanwhile, volunteers are asked to wear a light-green T-

shirt for easy identification and tracking. The tracking process first

calculates the projection matrix between the pixel frame and the

world frame with the markers in the field of view. Then, it converts

the pixel location of the target point into horizontal 2D location in

real world, given the constant height of the target point.

5.2 System Performance

Localization accuracy. We first report the overall performance

of Widar2.0. As shown in Figure 13, Widar2.0 achieves an aver-

age localization error of 0.75 m, with single Wi-Fi link only. As

comparison, using two links improves the performance, with an

average localization error of 0.63 m. The performance improvement

attributes to not only increasing number of measurements, but

also the orthogonal deployment of the two links. Specifically, with

two orthogonal links, at least one link is able to capture reflection

signal with sufficient large DFS [21], leading to clear extraction

of reflections with bandpass filter, during the CSI calibration pro-

cess (Section 3.3). Noting that walking direction of the target do

influence the system performance, we further analyse its impact in

Section 5.3.

Comparative study. We compare Widar2.0 with the state-of-

the-arts, DynamicMusic [16] and IndoTrack [17]. Specifically, Dy-

namicMusic uses JADE to estimate AoAs of signals reflected by the

target at receivers, and pinpoints the intersection of AoAs as target

location. IndoTrack further incorporates DFS with AoA for track-

ing. It recursively calculates target velocity from instantaneous DFS

and target location, and then updates target location with newly

estimated target velocity. Meanwhile, AoA is used for spotting the

initial location of the target, and computing the confidence level of

the trace calculated from DFS. Both DynamicMusic and IndoTrack

estimate AoAs of reflection signals directly from CSI, which how-

ever fails to yield stable AoA estimations as the target is away from

links. As an alternative, we use AoAs estimated by Widar2.0 as the

input of the two approaches.

Figure 14 shows the system performance of three approaches.

First, Widar2.0 significantly outperforms DynamicMusic, which

has average localization deviation of 1.1 m. It is mainly because that

DynamicMusic only uses AoA and thus cannot compensate AoA

errors with movement continuity indicated by DFS. In addition,

DynamicMusic fails to pinpoint the target when he is on the LoS

path between two receivers. In such ill-conditioned case, AoAs at

two receivers coincide with each other and their point intersection

spreads into a long line segment, leading to high localization error.

Second, the average performance of Widar2.0 is slightly worse

than but still comparable to that of IndoTrack, which has average

localization error of 0.48 m. However, IndoTrack has a much longer

error tail thanWidar2.0. The reason is that IndoTrack only leverages

DFS for direct tracking, yet uses AoA as the confidential indicator

of the estimated trace. As a result, while IndoTrack benefits from

movement continuity at the start of tracking, its performance grad-

ually degrades with the accumulation of DFS errors. In contrast,

Widar2.0 uses both AoA and ToF calibrated by DFS for tracking,

and thus avoids error accumulation. Section 5.3 further analyses

the impact of walking distance.

Benefits of individual modules. This part studies the impacts

of the proposed path matching (PM) and range refinement (RR)

processes on system performance. Figure 15 shows the effects of

the two steps. On one hand, without the PM process, the average

localization error increases to 0.84 m. It demonstrates that the PM

process is more robust to estimation noises and able to match more

correct parameters of the signal of interest, in comparison with the

Hungarian algorithm. On the other hand, the tracking accuracy

is improved by 13 cm with the RR process. Specifically, the RR

process smooths ToF-based range with DFS, and thus benefits from

continuity of target movement.

5.3 Parameter Study

Impact of walking direction. To evaluate how walking direction

impacts the system performance, we ask volunteers to walk along

lines with various directions and track their locations with single

link, as well as two orthogonal links. Figure 16 shows the distri-

bution of localization errors with walking directions. Specifically,

with single link, localization error statistically increases as targets

tend to walk in parallel with the link, as DFS of reflection signals

observed by the receiver becomes smaller and performance of the

calibration process degrades.

As comparison, the performance improvement with additional

link is from two folds. First, the level of localization error across

all walking directions is reduced, as the system is more robust

to noises with measurements from multiple receivers. Second, the

error distribution along walking directions is more uniformed, since

with two links can signals with significant DFS always be captured,

leading to more accurate estimations of signal parameters.

Impact of walking distance.We further explore the impact of

walking distance. Specifically, we ask volunteers to keepwalking for
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Figure 21: Impact of packet rate.

a long distance of about 40 m in the monitoring area, and evaluate

two approaches, Widar2.0 and IndoTrack with collected traces. Fig-

ure 17 shows the average localization errors of the two approaches.

The error bar indicates the 10-percentile and 90-percentile error

boundaries. As shown, while IndoTrack has small localization er-

rors when the walking distance is short, its location results happens

to drift away as the distance increases. The reason is that IndoTrack

only uses DFS to estimate target velocity and further update target

location, which suffers from accumulation of DFS errors. In con-

trast, Widar2.0 uses absolute ToF to avoid error accumulation and

achieves consistent localization accuracy, and is thus feasible for

continuous tracking.

Impact of walking velocity. During experiments, volunteers

are allowed to walk freely at various speeds. To evaluate the impact

of walking velocity, we compute groundtruth velocity from ground

truth location captured by the digital camera. Figure 18 shows

the distribution of location error with walking velocity. Typically,

human walking velocity is no more than 4 m/s. As shown, the

location error is stably around 0.6 m, yet gradually reduces as the

walking velocity increases. The observation is intuitive, since large

walking velocity leads to large DFS at receivers, whichmay facilitate

the calibration process to extract reflection signals.

Impact of environment. In order to demonstrate the influence

of environment diversity, we conduct experiments in three different

scenarios: classroom, office and corridor, as in Figure 11. Note that

two receivers are used in the classroom, while one receiver is used

in the office and corridor. Figure 19 shows the localization errors of

Widar2.0 at different spots. As shown, Widar2.0 achieves low aver-

age localization errors of 0.63 m, 0.4 m and 0.51 m respectively. Since

Widar2.0 only relies on the reflection signal with non-zero DFS and

the dominant LoS signal, it is robust to multipath effect in indoor

environments, and is applicable to various indoor environments.

However, the system performance still varies among different

environments, which is due to two factors. First, the system perfor-

mance is inversely related to the size of tracking area. Specifically,

the tracking areas in the classroom, office and corridor are about

30 m2, 10 m2 and 20 m2 respectively. With larger tracking area, the

signal reflected by targets tends to be weaker and more vulnerable

to noises, leading to degradation of system performance.

Second, distance between the transmitter and receiver (i.e. link

length) also impacts the system performance. Given the walking

direction and velocity of the target, the larger the link length is,

the smaller the DFS is observed at the receiver, which degrades the

system performance. Specifically, the link length in classroom (6

m) is much larger than that in the office (2.5 m) and corridor (2 m),

explaining the deterioration of system performance in the large

classroom.

Impact of human diversity. To determine whether Widar2.0

consistently works for different users, 6 volunteers, with different

genders, heights and body shapes, are recruited to participate the

experiment. Before the experiment, volunteers are only explained

with basic experimental settings, such as tracking area and typical

walking traces. They are not specially trained and walk according to

their own habits. Figure 20 plots the localization errors of Widar2.0

with different targets. As shown, Widar2.0 achieves consistent lo-

calization accuracy across all targets, without knowing any body

features of targets.

Impact of packet rate. To find out the minimum packet rate

required for Widar2.0 to correctly work, we initialize the packet

rate at the transmitter as 1000 Hz, and gradually discard CSI col-

lections to achieve packet rates of 500 Hz and 250 Hz. Figure 21

shows the localization errors with different packet rates (blue bars),

which remains almost unchanged as the packet rate exponentially

decreases from 1000 Hz to 250 Hz. It demonstrates that Widar2.0
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works with moderate packet rate, and is practical with real Wi-Fi

transmissions. However, further reducing the packet rate may lead

to aliasing of DFS estimation. Specifically, as the human walking

velocity is no more than 5 m/s, the range of corresponding DFS is

within ±fDmax
= ±100 Hz. Suppose packets are evenly transmit-

ted with interval of Δt , in order to uniquely determine DFS, the

atomic DFS-induced phase, 2π fDΔt should be within the range of

2π . Thus, the maximum packet interval required by Widar2.0 is

Δtmax =
1

2fDmax
= 1

200 s, which corresponds to a minimum packet

rate of about 200 Hz.

We further evaluate the per-second computation cost of steps in

Widar2.0, as shown in Figure 21 (stacked bars). As steps of range

refinement and localization cost less than 1 ms, we only consider

processing time of the rest steps, i.e. CSI cleaning, parameter esti-

mation and path matching. As shown, the major time cost comes

from iterative optimization in the step of parameter estimation. By

decreasing the transmission rate, the computation cost is reduced.

Given that a transmission rate of 250 Hz is sufficient, the per-second

processing time is 0.7 s, enabling real-time tracking with Widar2.0.

6 DISCUSSION

Multiple person tracking. We conduct preliminary experiments

where two persons walks in the monitoring area. The results show

that while Widar2.0 accurately estimates DFS and recognizes two

persons, it fails to yield accurate AoA and ToF, and further track

multiple persons. The reasons are two fold. First, the NIC has only

3 antennas, limiting the resolution of AoA for separating two reflec-

tion paths. Second, the channel bandwidth is only 20 MHz, resulting

in small phase change by ToF and erroneous ToF estimation. In re-

vision, we plan to combine multiple Wi-Fi NICs on one receiver [9],

and splice multiple channels [37] for fine-grained AoA and ToF

estimation for multiple person tracking.

Tracking in NLoS condition. Two types of LoS conditions

should be satisfied to enable track with Widar2.0. First, the LoS

path between any transceiver and the person should exist, since

Widar2.0 requires the ToF of signal directly reflected by the person

for localization (Section 4.3). Second, the LoS path between two

transceivers should exist, since Widar2.0 can only estimate the

difference of ToFs between the reflection signal and the strongest

LoS signal of the link (Section 3.3). In cases where the LoS conditions

are not fulfilled, ToF estimation becomes erroneous and cannot

be used. However, as there are multiple links in typical indoor

environments, it may group tracking results of these links and filter

out outliers with NLoS conditions [40].

Device deployment. Displacement of devices acts as a main

factor limiting tracking range of Widar2.0. On one hand, reflection

signal is much weaker than LoS signal, due to longer propagation

distance and additional reflection loss, and is hard to be captured in

CSI. Thus, it is likely to displace devices around the height of human

body to increase reflective surface. On the other hand, Widar2.0 rec-

ognizes reflection signal with its non-zero DFS, which is equivalent

to the change rate of reflection path length [21]. However, increase

in the distance between transceivers may reduce the change rate,

and make it more difficult to distinguish reflection signal from static

signals. So the link length should be controlled within a moderate

range, which is 6 m verified through experiments.

7 RELATEDWORK

Our work is broadly related to research in wireless sensing, which

studies RF channel characteristics and derives both syntactic (e.g.

location, velocity) and semantic (e.g. human activity) environmental

contexts.

Device-based Localization.Device-based localization has been

an area of active research in the last decade. Generally, it requires

objects to carry devices that transmits RF signals, and calculates

signal parameters, e.g. AoA [9, 12, 23, 24, 39], ToF [29, 37, 39, 40],

using fine-grained channel state information [43]. SpotFi [13] ap-

plies JADE [28] algorithm to jointly estimate AoA and relative ToF

of dominant incident signals. A pioneer work Splicer [37] splices

the CSI measurements from multiple Wi-Fi channels, which greatly

extends the bandwidth available and yields sub-nanosecond TDoA

for accurate localization. Chronos [29] further calculates accu-

rate sub-nanosecond ToF by leveraging phase differences between

subcarriers spanning multiple Wi-Fi channels. WiCapture [14]

achieves centimeter-level tracking accuracy by modelling CSI phase

changes caused by transmitter motion. Since Wi-Fi transceivers are

not synchronized, these works require irregular communication

steps [29, 37] to splice multiple channel for accurate ToF estima-

tion. In contrast, Widar2.0 embraces the multipath characteristics

of Wi-Fi channel and calculates ToF of reflection path with only

normal packet transmission.

Device-free Tracking. Various hardware [2–4, 11] are manu-

factured to capture extremely weak human reflections. WiTrack [2,

3] develops FMCW radar to accurately estimate ToFs of reflections

in frequency domain. WiDeo [11] uses full-duplex Wi-Fi that en-

ables self-interference cancellation, and jointly estimates ToFs and

AoAs to localize all reflectors. xDTrack [38] applies SAGE algorithm

to Wi-Fi signals to jointly estimate multi-dimensional signal pa-

rameters on SDR platforms. While xDTrack inspires Widar2.0, our

work advances in modeling discrete CSI measurements, tackling

with unknown CSI phase noises and supporting COTS Wi-Fi de-

vices. Furthermore, Widar2.0 leverages multipath effects to enable

estimation of absolute ToF.

Since dedicated hardware are difficult to be generalized, re-

searches are shifted to ubiquitous COTSRF devices, such as RFID [26,

27, 33, 42], millimetre wave [35, 45] and Wi-Fi [21, 32]. Comparing

with RFID and millimetre wave, Wi-Fi is much more ubiquitous in

daily life, but it suffers from unknown phase noises [34] and cannot

directly use signal phase for passive tracking. Instead, LiFS [32] em-

ploys radio tomography imaging approach for localization, which

requires dense deployment of devices. WiDar [21] derives DFSs

from CSI amplitude, and accordingly calculates the target’s velocity

and location. However, due to lack of phase information, WiDar

cannot independently calculate locations and suffers from accumu-

lative error. DynamicMusic [16] estimates AoA of reflection from

CSI by MUSIC algorithm. IndoTrack [17] further incorporates AoA

with DFS for successive tracking. Differently, Widar2.0 employs

a maximum likelihood algorithm for joint signal parameter esti-

mations and enables single-link tracking, while all existing works

require at least two links.

Wi-Fi based Gesture andActivity Recognition.Wi-Fi-based

activity recognition attracts considerable research interests recently.
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Many innovative applications have been designed, including activ-

ity and gesture recognition [20, 30, 34], respiration detection [31]

and direction estimation [22, 36], etc. Most of these works employ

learning techniques to model relations between human activity and

CSI variations. CARM [34] uses power distribution of DFS compo-

nents as learning features of HMMmodel. Given that CSI variations

are determined by not only DFS but also ToF and AoA, Widar2.0

can fertilize these works, as uncorrelated parameters ToF and AoA

can be first estimated and decoupled from learning features, leading

to position and orientation agnostic activity recognition.

8 CONCLUSION

In this paper, we present Widar2.0, the first passive tracking system

that only requires one single WiFi link and achieves sub-meter level

tracking accuracy, without support of any additional infrastructure

or sensors. We implement and evaluate Widar2.0 on COTS Wi-Fi

devices. The results show that Widar2.0 achieves a median location

accuracy of 0.75 m in a 6 m × 5 m area, comparable to state-of-

the-arts approaches based on multiple links. Widar2.0 opens up

passive tracking to new applications where few devices are available

or accessible, e.g., homes and mobile environments. Future work

extends to multiple target tracking and through-wall monitoring.
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