mmEye: Super-Resolution Millimeter Wave Imaging
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Abstract—RF imaging is a dream that has been pursued
for years yet not achieved in the evolving wireless sensing.
The existing solutions on WiFi bands, however, either require
specialized hardware with large antenna arrays or suffer from
poor resolution due to fundamental limits in bandwidth, the
number of antennas, and the carrier frequency of 2.4GHz/5GHz
WiFi. In this paper, we observe a new opportunity in the
increasingly popular 60GHz WiFi, which overcomes such limits.
We present mmEye, a super-resolution imaging system towards
a millimeter-wave camera by reusing a single commodity 60 GHz
WiFi radios. The key challenge arises from the extremely small
aperture (antenna size), e.g., < 2 cm, which physically limits
the spatial resolution. mmEye’s core contribution is a super-
resolution imaging algorithm that breaks the resolution limits
by leveraging all available information at both the transmitter
and receiver sides. Based on the MUSIC algorithm, we devise a
novel technique of joint transmitter smoothing, which jointly uses
the transmit and receive arrays to boost the spatial resolution
while not sacrificing the aperture of the antenna array. Built
upon this core, we design and implement a functional system
on commodity 60GHz WiFi chipsets. We evaluate mmEye on
different persons and objects under various settings. Results show
that it achieves a median silhouette (shape) difference of 27.2%
and a median boundary keypoint precision of 7.6 cm, and it can
image a person even through a thin drywall. The visual results
show that the imaging quality is close to that of commercial
products like Kinect, making for the first-time super-resolution
imaging available on the commodity 60GHz WiFi devices.

Index Terms—mmWave, MUSIC algorithm, Super-resolution
imaging, 60GHz WiFi

I. INTRODUCTION

RF imaging is a long-standing, challenging problem in the
evolving community of wireless sensing. Given the ubiquity
of WiFi, it is of particular interest to enable imaging using
WiFi reflection signals, i.e., creating images of humans and
objects without attaching any radio source to the target. It
would enable pervasive human and object sensing with rich
contexts (not only the location but also silhouette/shape, size,
pose, etc.) for new applications such as interactive gaming,
pose estimation, exercise assessment, human recognition, efc.,
all in a privacy-preserving, lightweight and cost-effective way.

Despite of the advances in reusing WiFi devices for wire-
less sensing [1l], [2], such as activity sensing [3], gesture
recognition [4], vital sign monitoring [5], efc., RF imaging
faces significant challenges and remains unsolved. Prior works
related to RF imaging on WiFi bands can track human motion
and activities [6], [7], map large obstacles [8]], and detect
malicious objects [9]. But they require specialized hardware
with large antennas unavailable on commodity radios or suffer

from poor imaging quality. Wision [1Q] explores the feasi-
bility of using 2.4GHz WiFi radios with multiple antennas
for object imaging, but the resolution is inherently limited
by WiFi signals at 2.4GHz/5GHz. Recent works strive to
estimate human figures (i.e., skeletons, and poses) [L1], [12]
with a neural network trained by video, but again require
multiple specialized FMCW radars with relatively large arrays.
Generally, the imaging capability of 2.4GHz/5GHz WiFi is
fundamentally limited by narrow bandwidth, small antenna
number, and large wavelength. While existing millimeter-
wave (mmWave) systems can offer high precision imaging
[13], [14]], [1S] with large lens radars and dedicated circuits,
they are all specialized radars and not suitable for ubiquitous
applications. [16] took the first step in RF imaging using
60GHz networking radios. However, it focuses on imaging
objects only and requires to precisely move the receiver,
without fully exploring advantages from 60GHz radios.

Recently, two new opportunities have arisen in the design
of WiFi imaging systems:

o 60GHz networking radios are emerging as 60GHz WiFi
(e.g., 802.11ad/ay [17]), which is already available in
commercial routers [18]] and is being integrated in smart-
phones and in cars [19]. Compared to 2.4GHz/5GHz
bands, 60GHz radios offer several distinct advantages:
millimeter-wavelength on a high-frequency band, highly
directional links enabled by a large phased array (e.g.,
6x6 elements), and usually large bandwidth that under-
pins high ranging resolution (e.g., < bcm).

« In addition to networking, commodity 60GHz radios are
going to support a dual role of radar-like sensing [20],
with merely one extra antenna array attached to the
chipset and without any circuit changes. With this, the
60GHz radio, under the radar mode, can transmit and
receive on a single networking device and capture the
precise channel response for precise sensing and imaging.

In this paper, we leverage the foregoing opportunities and
present mmEye, a super-resolution RF imaging system towards
a millimeter-wave “camera” using a single commodity 60GHz
WiFi device. mmEye leverages the 60GHz networking radio
with its unexplored radar sensing capability. It can image both
humans, either moving or stationary with different poses, and
objects of various shapes, sizes, and materials. It can even
image through a thin drywall, despite the high attenuation of
60GHz signals.

Even with the radar operations, however, enabling imaging



Fig. 1: Example imaging results produced by mmEye (top) compared with Kinect (bottom). The subjects are about 1 meter

away from the device.

on commodity 60GHz WiFi radio entails great challenges.
For example, purposed for networking, the device is not
calibrated as well as and thus not as stable as conventional
radar, resulting in fluctuating signal responses. Additionally,
reflection signals may be frequently missed due to the in-
herent high attenuation and directionality of 60GHz signals.
The biggest challenge, however, is to achieve high imaging
accuracy with the compact 60GHz array with a small aper-
ture, a key factor that determines the imaging resolution. In
general, the imaging resolution of a radar system is defined
by resolution o« wavelength x distance/aperture, which is
about 28cm at 1m distance for our experimental device with an
antenna array size of 1.8cm x 1.8cm. Prior works attempt to
extend the effective aperture by synthetic array radar (SAR),
which, however, requires receiver movements and is highly
sensitive to the moving trajectory tracking error. The impact
of the trajectory error becomes particularly noticeable when
the error is greater than the wavelength, which is likely to
occur for 60GHz signals with a wavelength of Smm.

Differently, mmEye devises a super-resolution algorithm to
break through the resolution limited by the physical aperture
and enable precise imaging on commodity 60 GHz radio.
The proposed algorithm roots in MUSIC [21], one of the
most widely used spatial spectrum estimation techniques, and
achieves super-resolution through a novel joint transmitter
smoothing technique.

First, instead of using the on-chip analog beamforming,
we perform digital beamforming on the received signals,
which yields a much higher spatial resolution. The analog
beamforming built-in the radio usually only provides coarse
beam resolution (e.g., 3dB beamwidth of 15° for our device).
We boost the spatial resolution by using the MUSIC algorithm.
We perform MUSIC over each spherical surface of different
azimuths and elevations at every specific range, estimating
the spatial spectrum of the signals reflected off the target
at that range. The spatial spectrum, along with the accurate
range information offered by the 60GHz radio, will together
reconstruct an image of the target. MUSIC can be used for
imaging since the signals are sparse on each spherical surface.
However, it is not directly applicable since it suffers from the
rank deficiency issue, i.e., the rank of the correlation matrix of

the signal space is smaller than the number of actual incoming
signals.

To overcome the rank deficiency problem, we employ
spatial smoothing in 2D space [22], a technique to split the
receive array into several overlapped subarrays that reuse
the same steering vectors. By adding one more subarray,
it is approved that the rank of the correlation matrix of
signals increases by 1 with probability 1 [23]]. In addition to
the spatial subarrays, mmEye utilizes the time diversity of
consecutive measurements to estimate the correlation matrix.
The synthesized spatial and temporal smoothing effectively
solves the rank deficiency issue and significantly reduces the
variance of the spatial spectrum estimation by MUSIC.

Spatial smoothing on the receive array, however, further
reduces the small antenna array size, i.e., the effective aperture,
thereby degrading the imaging precision. To increase the rank
without loss in aperture, we propose a novel 2D spatial
smoothing that jointly reuses the transmit array and the receive
array, termed as joint transmitter smoothing. Specifically,
rather than dividing the receive array into subarrays, we reuse
the entire receive array for each individual transmit antenna
as a subarray. Given our case of 32 transmitter elements, we
immediately obtain 32 subarrays, offering a guaranteed rank
of 32, which is adequate for the sparse reflection signals, while
retaining the scarce aperture unimpaired. Since the subarray
size is as big as the whole receive array, the imaging resolution
is maximized. Besides the improvement on the spatial reso-
lution, the joint transmitter smoothing scheme also alleviates
the well known specularity problem for RF imaginéﬂ, that the
signals reflected off the target may not be captured due to the
inherent high attenuation and directionality of the mmWave
signals, by utilizing the transmit diversity.

Based on the super-resolution algorithm, we design and
implement a functional system of mmEye with additional com-
ponents on the background and noise cancellation and adaptive
target detection, efc. We prototype mmEye on commodity
60GHz networking chipset attached with an additional array

INote that the specularity problem for mmWave signals is much less
severe when compared with 2.4GHz/5GHz signals [12], [[7] since specular
reflection happens when the surface roughness of an object is smaller than
the wavelength according to Fresnel’s Law [24].



and perform experiments with different subjects, locations,
and postures. The results demonstrate that mmEye achieves
accurate imaging results visually close to a Kinect depth sensor
[25]], as shown in Fig. [I] with a median silhouette (shape)
difference of 27.2% and a median boundary keypoint precision
of 7.6cm at the range of 1 meter. With the encouraging per-
formance on a single networking device, we believe mmEye
takes an important step towards a ubiquitous millimeter-wave
“camera” and the first step towards dual roles of networking
and radar sensing for commodity 60GHz WiFi radios.

In summary, the main contributions of this paper are listed
as follows.

1) mmEye leverages the sparsity of the reflection signals
off the target at individual ranges and applies MUSIC
with a novel joint transmitter smoothing, which exploits
the Tx diversityﬂ to boost the imaging resolution and
robustness;

2) Various signal processing techniques, including back-
ground and noise cancellation, target detection, are uti-
lized to combat different kinds of defects inherent in the
RF system;

3) We prototype mmEye using a Qualcomm 802.11ad
chipset and conduct extensive real-world experiments.
It shows that mmEye achieves comparable imaging with
commercial products like Kinect using a single 60GHz
networking device in a much smaller size, underlying
pervasive imaging for various applications such as VR
gaming, pose estimation, efc.

We believe that the design of mmEye will also benefit and in-
spire future research on sensing using millimeter-wave radios.

The remaining part of the paper proceeds as follows: First,
we present a primer on 60GHz WiFi in Then we introduce
the core super-resolution algorithm in followed with
system design in §[V] We evaluate mmEye in §V] and discuss

future works in §VII We review the literature in §VII| and

conclude the paper in §VIII

II. REUSING 60 GHZ WIFI AS A RADAR
A. 60 GHz WiFi

60GHz WiFi technology, a.k.a. WiGig, with the established
IEEE 802.11ad/ay standards and low-cost commercial chipsets
[L7], [18], is becoming the mainstream in wireless devices
to enable high rate networking and rich user experience.
Different from the 2.4GHz/5GHz WiFi that faces fundamental
limitations in imaging, 60GHz WiFi offers unique advantages
for RF imaging. While the common 2.4GHz and 5GHz
WiFi devices have only 2 to 3 antennas and 20MHz/40MHz
bandwidths, 60GHz WiFi radios offer many-antenna phased
arrays in compact forms and large bandwidths centered at
high-frequency band of 60GHz. These properties translate into
several superior features for sensing:

o The large phased array enables highly directional beam-

forming with good spatial resolution.
o The large bandwidth offers high ranging accuracy.

2The 60 GHz WiFi chip is equipped with an antenna array at the Tx side
as well, which is different from the most of traditional Radars.

Fig. 2: Device setup and coordinate system. 6 and ¢ denote
the elevation and azimuth respectively, and r denotes the range
from the device to the reflector. The antenna array contains 32
elements in a 6 x 6 layout, with 4 missing locations marked
by red crosses.

e The high carrier frequency leads to more predictable
signal propagation that is immune to the multipath effects,
a huge challenge for 2.4GHz/5GHz WiFi.

e The carrier wavelength is Smm, over 10x shorter than
5GHz WiFi. This means the required antenna aperture can
be 10x smaller to achieve the same imaging resolution.

Additionally, we observe two trends that further promote
60GHz WiFi as an attractive solution for ubiquitous sensing
and imaging: 1) 60GHz networking chipsets is going to
support an additional role of radar-like processing, without
hardware changes except for merely one extra antenna array
for full-duplex radios, allowing rapid and precise phase mea-
surement with synchronized, co-located transmitter (Tx) and
receiver (Rx). 2) The commercial 60GHz WiFi, already used
in consumer-grade routers, is becoming relatively inexpensive
with increasing market adoption and will soon be available on
mobile devices.

Pioneer works have explored 60GHz radios for tracking
and sensing [16], [26], [27]. However, they mainly utilize
amplitude information and employ mechanical horn antennas
to emulate beam steering. Great potentials in the steerable
phased arrays and the dual radar mode of 60GHz WiFi remains
largely underexploited.

B. 60GHz WiFi Radar

As shown in Fig. 2] we use commodity Qualcomm 802.11ad
chipsets. To enable full-duplex radar operation, an extra array
is attached to the chipset to form co-located and synchronized
Tx and RXEI The Tx transmits pulses of a known sequence,
which, after reflection on surrounding targets, are received
and correlated on the Rx side to estimate Channel Impulse
Response (CIR) with precise amplitude and phase information.

Suppose N elements in the Tx array and M elements in the
Rx array. The CIR between the n-th transmit antenna and the
m-th receive antenna h,, ,(7) at time slot ¢ can be expressed
as

L-1
hm,n(T’ t) = Z a’in,n(t)(s(T - Tl(t))v ey

=0

3In practice, the dual networking and radar role can be achieved by rapid
switching in time., since the radar sensing only requires minimal time. Under
the networking mode, the extra array simply provides additional spatial
diversity.
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Fig. 3: The spatial spectrum for different propagation delay 7, which demonstrate the sparsity of the reflected signals off the

target at individual range/delay.

where §(-) is the Delta function, L is the number of the total
CIR taps, and afn’n and 7; denote the complex amplitude and
the propagation delay of the [-th tap, respectively. To simplify
the notations in the following, we omit the dependence on
the measurement time ¢ if not mentioned. The time resolution
AT of the measured CIR is determined by the bandwidth B
of the transmitted signal, i.e., A7 = 1/B. Then, 7; can be
expressed as 7; = 79+ (I—1) AT, where 7y denotes the time of
arrival of the first tap. At each time slot, mmEye captures M x
N x L complex values, i.e., by, (71), where m=1,--- | M,
n=1---,N,and [ = 0,---,L — 1. The 3D information
of the target being imaged can be thus inferred from these
measurements.

Specifically, our experimental device has 32 elements as-
sembled in a 6x6 layouﬂ for both Tx and Rx (i.e., N =
M = 32) and operates at 60GHz center frequency with a
3.52GHz bandwidth. The measured CIR thus offers a propa-
gation delay resolution of A7 = 0.28ns, corresponding to a
range resolution of 4.26 cm. When the device is set to radar
mode, each CIR h,, ,(7) is measured in a sequential way as
follows: the n-th transmit antenna transmits an impulse while
other transmit antennas keep silent, and only the m-th receive
antenna records the corresponding CIR at the same timeﬂ The
above channel sounding process would repeat 32 x 32 = 1024
times in total for a complete CIR recording.

III. SUPER-RESOLUTION IMAGING

RF imaging leverages the observation that the energy dis-
tribution of the reflected RF signals over the space would
sketch the silhouette of a target. mmEye tries to reconstruct
the contour of the target based on the estimation of the Angle
of Arrival (AoA) and Time of Arrival (ToA) of each signal
reflected off the surface of the target. As mentioned above,
however, the spatial resolution is greatly limited due to the
small effective aperture of the receive antenna array. For
example, the on-chip analog conventional beamforming (CBF)

4 Antennas are missing at four locations that are preserved for other purposes
like power port, as shown in Fig.
S5This is because all the transmit/receive antennas share a single RF chain.

only provides a 3dB beamwidth of 15°, which is inadequate
to image a target, especially when the target is far away to the
device.

To boost the spatial resolution, mmEye performs digital
beamforming on the received CIR as opposed to the on-
chip analog beamforming, which achieves higher resolution in
distinguishing the signals radiated by nearby parts of the target.
Noticing that the CBF and the well-known minimum variance
distortionless response (MVDR) beamforming (a.k.a. Capon
beamformer) [28]] both produce poor precision, we devise
in this work a super-resolution algorithm based on MUlItiple
Signal Classification (MUSIC) [21]], one of the most widely
used algorithms for AoA estimation.

A. Imaging with MUSIC

The basic idea of the MUSIC algorithm is to perform
an eigen-decomposition for the covariance matrix of CIR,
resulting in a signal subspace orthogonal to a noise subspace
corresponding to the signals reflected off the target. MUSIC is
typically used for reconstructing the spatial spectrum of sparse
signals. The reason why it is also applicable for imaging is
that for each propagation delay 7;, the signals reflected off a
target are sparsely distributed in the space. More specifically,
as illustrated in Fig. [3] although the number of the reflected
signals is large, these reflections occur over a large span of
the propagation delays (i.e., ranges) and thus the number of
signals with a certain propagation delay (i.e., reflected at a
certain range) is small. Typically, there are only four to six
significant reflected signals for each 7;. Therefore, for each
71, the signal structure for target imaging is in line with the
assumptions of the MUSIC algorithm, making the MUSIC
algorithm feasible for solving the imaging problem. This is
a result of utilizing the large bandwidth of the 60GHz WiFi,
which offers fine-grained range resolution.

Define a vector h,, (1) = [hf (1), , kY, (7)]", given
a fixed transmit antenna n, to record the calibrated complex
channel gains of all the receive antennas at a propagation delay
7;. To simplify the notations, we omit the dependence on the
propagation delay 7; and the transmit antenna index n if not
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Fig. 4: Spatial smoothing. Four 4 x 4 subarrays are established
from the 6 x 6 receive array.
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mentioned. Then, assuming that there are D reflected signals
impinging on the receive antenna array at the propagation
delay 7, the CIR h can be formulated as

T €1
T S(0D7 ¢D):| + ) (2)

EM

h = [s(61, $1),

D

where s(0;,¢;) denotes the steering vector pointing to the
direction (6;, ¢;) corresponding to the incoming direction of
the ¢-th reflected signal, x; denotes the complex amplitude
of that signal and ¢; stands for additive noise, which is
assumed to be Gaussian random variable with zero mean and
independent and identically distributed (I.L.D.) for different
receive antennas. More specifically, the steering vector s(6, ¢)
records the phase response of the antenna array for a signal
coming from the direction (6, ¢) with its power normalized to
1, which can be expressed as

o ,
S0,0) = —— | vy g 3)
) - \/M 0 0,0 )
KRS

where Uy and €y 4 are two basis functions defined as ¥y =
exp(jkdsin®) and Qg4 = exp(jkdcosfsing), p and q
denote the row and column index of the antenna element on
the array as shown in Fig. [2} k is the wave number, and d is
the distance between two adjacent antennas along y or z-axis.
The indices without an antenna element (marked as red crosses
in Fig. @) are skipped in the steering vectors. A more concise
matrix representation of Eqn. 2)) is written accordingly as

h = Sx+e, “4)

where S is defined as the steering matrix. Note that for a
static target, the complex amplitude vector x is deterministic
(fully coherent sources), and thus the covariance matrix of
h would only contain the information of the noise. Therefore,
the correlation matrix is used insteacﬂ which can be expressed
accordingly as

R

E[hh®]
Sxx S + Elee?)
R; + R., 3)

> 1l

where R, and R. denote the correlation matrix for the
signal components and noise, respectively. The eigenvalues
A1, , Ay of R are sorted in a non-descending order, as-
sociated with M eigenvectors ej,--- ,eps. Then, the noise
subspace can be constructed as F. = [ep41,- - , €], where
D stands for the rank of R, or namely the dimension of
the signal subspace. The (pseudo) spatial spectrum for any
direction (6, ¢) can be obtained as

1
(0, 0)E-EFs(0, )

Large values of the spatial spectrum P(6, ¢) in a specific part
of the space would most likely indicate the presence of one or
more reflected signals; low values of P(6, ¢) would indicate
the absence of such reflections.

P(©.6) = o ©)

Remark 1. Note that the CBF-based spatial spectrum for any
direction (0, ¢) can be obtained as

Popr(6,¢) = s (0, 0)Rs(0, ¢), (7
and the MVDR-based spatial spectrum can be expressed as
1
Pyvor(6, ¢) = (8)

st(6,9)R~'s(6,¢)
Order Selection Another critical problem to apply MUSIC
is to determine the number of signals D that impinge on the
array. In mmEye, Akaike information criterion (AIC) [29]], a
well-known information-theoretic approach for model order
selection, is used. AIC is composed of two terms: a data
term, measuring the likelihood of the data given a certain D,
and a penalty term, measuring the complexity of the model.
Specifically, D is calculated as

M 1/(M—D (M-D)
IliZp /\i/( ) )
Aj

1/(M-D)S Y
—D(2M — D), 9)

D* = 1
arg max log (

where \; denotes the i-th largest eigenvalue of the correlation
matrix R. Since the AIC criterion tends to overestimate
the number of impinging signals, AIC can retain the weak
reflected signals to the greatest extent possible, which is
desirable in the imaging application.

The MUSIC algorithm requires the rank of Ry to be the
same as the number of incoming signals D). However, since

6Note that in this work, h is treated as a random vector and each experiment
is just one realization of it. Under the assumption that the ensemble mean of
h is equal to zero, i.e., E[h] = 0, the correlation matrix is equivalent to the
covariance matrix.



the rank of R is only 1 which is likely much smaller than D,
the performance of the MUSIC algorithm would deteriorate
greatly or even completely fail to produce an effective spatial
spectrum. To solve the problem, spatial smoothing [22], [30],
a commonly used technique for the rank deficiency issue, is
applied as follows.

B. Spatial Smoothing

The idea of the spatial smoothing is to split the receive
array into several overlapping subarrays that share the same
steering vectors except for certain angular rotations due to
the differences in the time of arrival of the reflected signals
impinging on different subarrays. Fig. 4] shows an example
of the selected subarrays from the original 6 x 6 receive
antenna array. As seen, due to the issue of missing antennas
at certain locations of the array, no subarray with dimension
5 x 5 can be found and only four 4 x 4 antenna subarrays
can be establishecﬂ Let sy (0, ¢) denote the steering vector
for the k-th subarray, then we have sj9)(6, ¢) = Q9 g5[1)(0, ¢),
S[g] (9,¢>) = ngd)S[l](Q, d)), and S[4] (9, ¢) = \119994)5[1] (97 (j))
The correlation matrix of each subarray can be averaged to
form the “spatially smoothed” correlation matrix R with a
higher rank, i.e.,

1K
R= §ZR[,€], (10)
k=1

where R[;; denotes the correlation matrix of the k-th subarray.
It is proved in [23] that the rank of R increases by 1 with
probability 1 for each additional subarray in the averaging
until it reaches its maximum value. Therefore, the rank of
R can be restored to 4 after the spatial smoothing, which,
however, is still under rank deficiency. To further solve the
rank deficiency issue and reduce the variance of the spatial
spectrum estimation, an exponential smoothing filter, which
utilizes the time diversity of consecutive measurements, is
applied to the estimation of the correlation matrix:

Ry =BR,_1 + (1—B)R, (11)

where 3 is the smoothing factor. The value of [ is chosen
based on the tradeoff between the responsiveness and accuracy
of the system, and mmEye uses 5 = 0.9 for the spatial
smoothing based method. The spatial spectrum for each 7;
can be thus produced by Eqn. (6).

The idea of spatial smoothing is also implemented in
ArrayTrack [31]] and SpotFi [32] for active target localization
with WiFi. However, they perform spatial smoothing along
with 1D array and subcarriers and aim to detect only the AoA
of the direct path signal. Differently, mmEye performs 2D
spatial smoothing and targeting at imaging, which needs to
identify all reflection signals.

C. Joint Transmitter Smoothing

Although spatial smoothing can improve the performance
of the MUSIC algorithm under highly correlated sources, it

7A square subarray is just one example of the subarray, which has the merit
that the spatial resolution for both azimuth and elevation are the same.

reduces the effective aperture of the array (changed from 6 x 6
to 4 x 4), which equivalently increases the beamwidth of the
array and decreases the spatial resolution. Could we solve the
rank deficiency problem of the correlation matrix without the
loss of the antenna aperture at the same time? We offer an
affirmative answer in mmEye by exploiting the Tx diversity
and accordingly devising a novel joint transmitter smoothing
technique.

As the AoA of each reflected signal is only relative to
the receive array, each receive array corresponding to each
Tx antenna should share the same set of the steering vectors
except for the angular rotations, similar to the discussions in
the above section for classical spatial smoothing. However,
the angular rotation is not due to the shifting of the subarrays
at the Rx array, but instead is caused by the tiny differences
in the locations of the Tx antennas. Considering the small
wavelength, these tiny differences can generate significant
enough phase deviations to the signals received by the receive
array coming from different TX antenna, which enables spatial
smoothing across the receive arrays associated with different
TX antennas. Thus, it is feasible to treat the whole receive
antenna array, for each specific TX antenna, as a subarray.
Thus in total, IV subarrays can be formulated.

Recall that h,,(7;) denotes the received CIR at 7; for the
n-th transmit antenna. Define the channel matrix for each 7
as H(r;) = [hi(7), -+ ,hn(7)]. Then, the corresponding
correlation matrix at 7; after spatial smoothing can be obtained
as

1

N
RTx (n) = Z h, (Tl)hg (1)
n=1

2= =

H(m)H (1) (12)
R (71) is now a full-rank matrix and multiple measurements
are not required unlike the case for spatial smoothing based on
a single transmit antenna, which increases the responsiveness
of mmEye greatly. Nevertheless, the exponential filter can still
improve the robustness of the spatial spectrum estimation,
which can be produced by Eqn. (6). mmEye uses 8 = 0.5
for the joint transmitter smoothing method, which implies
that mmEye needs 2 complete CIR recordings in average to
construct an image. Considering the 15 Hz channel sounding
rate of the device, it only takes mmEye about 0.13 seconds to
capture an image, which is sufficient for realtime applications.
Interestingly, the matrix H(7;)H* () is also known as the
time-reversal matrix [33]. If the Tx and Rx could share the
same array, the proposed imaging algorithm is related to the
time-reversal MUSIC (TR-MUSIC) imaging algorithm [34]]
with minor modifications to the formation of the steering
vectors.

D. Joint Receiver Smoothing

Thanks to the channel reciprocity [35], the imaging can
also be performed at the transmitter side as well. By simply
transposing the channel matrix H(7;), we can obtain another
set of channel measurements H7 (7;) between the Tx and Rx
antennas if the receive antennas were transmitting and the
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Fig. 5: Two illustrative CIRs: measured w/ and w/o a target
in front of the device.

transmit antennas were receiving. Similarly, the corresponding
correlation matrix after the joint receiver smoothing (JRS)
at 7, is obtained as Rpg.(r) = +HT(r)H*(7;), where
(\)* denotes the conjugate operation. However, the quality
of imaging on the Tx side is a little worse than that on the
Rx side. This is because, during the channel sounding, the
device first uses a fixed Tx antenna and scans through all the
Rx antennas before switching to the next Tx antenna, which
makes the phase measurements of different Tx antennas less
coherent. Therefore, mmEye only utilizes the joint transmitter
smoothing technique in practice.

IV. SYSTEM DESIGN

The work flow of mmEye is simple: Put the device at
a fixed location and perform a background calibration by
collecting seconds of measurements, then the system is ready
to image humans and objects present in the field of view.
In this section, we present the design of a functional system
based on the proposed super-resolution imaging algorithm. We
mainly incorporate two additional components of background
and noise cancellation and target detection before the ultimate
imaging.

A. Background and Noise Cancellation

Besides the target of interest, the transmitted signals may
also be reflected by the background objects, e.g., furniture,
ceiling, grounds, walls, efc. In addition, there are internal
signal reflections on the intermediate frequency (IF) cable
connectors, as shown in Fig. El These undesired reflections
from the background together with the internal noise interfere
with the signals reflected off the target and thus degrade the
imaging the quality. To combat these problems, in the follow-
ing, a background and noise cancellation (BANC) algorithm
is proposed to filter out the background reflections and the
internal noise.

Mathematically, the CIR A, ,, can be modeled as the sum of
the target-related component hfnm and the background/internal
reflection-related component hfnn To obtain hfnyn, mmEye
first collects a bunch of CIRs for the background without the
presence of the target to estimate hfmn, and then obtains hfn,n
by subtracting hfmn from the newly measured CIR h,, ,, with
the presence of the target.

Assume that there are () samples of the CIRs measured
without the target. Then, hf,w can thus be estimated by
the sample mean of the measured background CIRs, i.e.,
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Fig. 6: The obtained CIR after background and noise cancel-
lation.

hfnyn(n) R~ é Z(?zl him,n (71, t4). Due to the synchronization
errors and automatic gain control (AGC) module on the chip,
the random amplitude and common initial phase of the CIRs
changes from frame to frame. Therefore, it is not feasible to
subtract the background CIR directly from the CIR with the
target. A complex scaling factor « is thus applied to scale the
obtained background CIR before the cancellation. The clean
CIR hfnn after the background and noise cancellation can be
obtained accordingly as

hfnm(n,t) = Rumn (71, 1) — ahfn,n(n). (13)

Regarding to the choice of «, a minimum mean square error
(MMSE) estimator is applied which selects the value of « that
minimizes the energy of hl, , (7;,t) over the first Ly CIR taps,
Le.,
Lo—1
o = arg min Z [P (T1,t) — ahi’n,n(n)|2.
R

(14)

The analytical form of optimal solution o* can be derived
correspondingly as
Lo—1
* _ l:OO [hfn,n(Tl)]Hhmﬂl(Tht)

= - , (15)
Lo Rl ()] H R, (1, )

where 2 denotes the Hermitian of . The intuition for only
using the first Ly taps to estimate « is that the target being
imaged is usually at a certain distance from the device to be
observed completely in the specific field of view. Therefore,
the first few taps are not affected by the presence of the target
and are only affected by the AGC, leading to a more accurate
estimation of the scaling factor. Fig. [6] shows an example of
the CIR after the background and noise cancellation. It can
be observed that the impact of the target on the CIR taps has
been greatly magnified in terms of amplitude.

Remark 2. If the random initial phase offset of the CIR is
not compensated by BANC, the expectation of Rs in Eqn. (9)
would be a zero matrix and the correlation matrix R would
only contain the noise component.

Remark 3. The background reflection signals could be af-
fected when a target presents. However, this impact could be
negligible. The affected background reflection signals usually
travel a longer distance compared with those reflected off the
target, Because the energy of the 60 GHz signals decay very
fast as the propagation distance increases [36]], the strength
of the signals reflected from the target is much stronger than
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Fig. 7: Range of interest detection.

that of the affected background reflection signals. Besides,
the target detection algorithm only selects the most dominant
reflection signal for each direction. Therefore the background
subtraction algorithm works desirably for most of the cases.

B. Target Detection

The purpose of object detection is to robustly detect all
the CIR taps that are affected by the target(s) of interest.
Because not all the RF signals reflected off human body parts
can be captured by the receive antenna array, the energy of
the signals reflected off some parts of the target can be very
weak. To increase the “visibility” of the weak reflections,
for each propagation delay, we calculate the variation of the
energy distribution of the spatial spectrum V;(7), defined as
Vi(1) = Varg[Vary[P(0, ¢, 7)]], where Varg[-] denotes the
variance over parameter 6, P;(6,¢,7) denotes the spatial
spectrum for the direction (6, ¢) and the propagation delay
7 measured at time slot ¢. A large Vi(7) implies that the
energy distribution of the reflected signals for that range is
highly non-uniform in space, indicating the presence of a
target in that specific range, while for the range where no
target presents, the energy of the reflected signals is usually
small and uniformly distributed in space. By considering the
variance over all the directions, the signals that may be very
small along some specific directions could be amplified. Then,
the set of the range of interest (Rol) at time slot ¢ are formed
as Rol(t) = {r|Vi(r) > n, Vr}, where n(t) is a preset
threshold. To accommodate the time-varying interference and
noise, as illustrated in Fig. [/} we use a multiple of the median
value of Vi(7) as the threshold for each time slot ¢, ie.,
n(t) = kMed [V;(7)], where x denotes a constant coefficient,
and Med, [-] denotes the median value over 7. The reason we
use the median to determine the threshold is that the median of
Vi(T) can adaptively capture the variations of the noise level
of the board especially when the total number of the taps L
is large.

Then, we only need to search for the points of interest
over the spatial spectrum P(6, ¢, 7) within the Rol set. Due
to the fact that the millimeter wave cannot penetrate the
general object well, e.g., millimeter waves are mostly absorbed
within the human skin [37], only the first significant point
of P(0,¢,7) w.rt. T contains the information of the target.
Specifically, mmEye locates the points of interest based on the
following rule: given the spatial spectrum for each direction
(0, 9), try to find the first local maximum point of P (6, ¢, )
along 7 within the Rol set that exceeds a preset threshold
(chose as a small value to filter out device noise); if failed,
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Fig. 8: Examples of the spatial spectrum over 7 for different
directions.

then no point of interest is found for this direction. For each
point of interest (6}, ¢7, 77), the associated weight is the value
of the corresponding spatial spectrum, i.e., P(6*, ¢*, 7).

Fig. [8 shows two examples of the obtained spatial spectrum
for different spatial directions. The red dot in both examples
indicates the point of interest with weights 5.92 dB and 4.94
dB, respectively. The set of the points of interest (Pol) at time
slot ¢ is denoted as Pol = {(07,¢F, 77, PF),i = 1,---,S},
where S is the total number of Pol and P} denotes the value
of the spatial spectrum corresponding to that point, i.e., P} =
P(Or, o7, 7F).

R

C. Imaging

Finally, we transform the Pol into plain images with depth
and weighting information. mmEye first converts the Pol from
the polar coordinates (67,7, 7)) to Cartesian coordinates
(xF,yr,zr) by applying simple geometric transformations.
Then, all the Pol are projected to a 2D-plane that is parallel
to the y — z plane, as shown in Fig. 2] with a certain depth x4,
which is defined as the distance between these two planes. x4
is optimized as below to ensure that the shape of the target in
the obtained image agrees with the target’s actual shape.

The optimal depth z4 is determined automatically by solv-
ing a weighted least absolute deviation problem,

s
x); = arg min Z(Pi* — ) (zg — x})?, (16)
R
which minimizes the ¢>-norm of the distances between the Pol
and the selected plane, weighted by their importance (P} —-),
where y is the same threshold used in the target detection and
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(c) mmEye-SS

(ii) Subject 2
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(d) mmEye-JTS

(e) Kinect

Fig. 9: Examples of the imaging results. (a)-(d) show the examples of the obtained images by different spatial spectrum
estimators. The color indicates the value of P for the i-th detected point, and the higher value, the redder color. (c) and (d)
are the results by mmEye with spatial smoothing (SS) and joint transmitter smoothing (JTS), respectively. (e) is obtained as

the ground truth by a Kinect depth sensor.
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Fig. 10: Performance of human imaging over subject-to-device
distance.

thus the weights are always positive. It is designed to preserve
the most of information of the Pol round the projected plane.
To further remove the outliers within the set of Pol, mmEye
only selects the points that are close enough to the projected
plane, ie., |z} — z}| < w, where w is a preset threshold.
Fig. [0] portrays two examples of the obtained image of
a person, which shows that the proposed super-resolution
algorithm significantly outperforms prior approaches CBF and
MVDR and achieves comparable results with Kinect.

V. EVALUATION

In this section, we evaluate mmEye in practical settings
using a commodity 802.11ad chipset. We study the imaging
quality for both humans and objects and both LOS and
NLOS. We also compare mmEye with existing beamforming
techniques CBF and MVDR.

A. Methodology

Experiment Setup. We prototype mmEye and conduct real-
world experiments using a Qualcomm 802.11ad chipset. The
chipset is equipped with two antenna arrays, both having 32

antennas arranged in a 6x6 topology. During experiments,
the device is operating in a radar mode, i.e., the Tx anten-
nas constantly transmit pulses and the Rx antennas receive
the reflected signals and estimate the CIR accordingly. The
channel sounding rate of the device is set to 15 Hz.

Our experiments take place on one floor of a typical office
building of size 28 m x36 m, which is furnished with desks,
chairs, computers, and TVs. A typical setup of the system is
shown in Fig. [2| Both humans and everyday objects are tested
in our experiment. For human imaging, we recruit 4 volunteers
(two males and two females) and test out at different locations
and distances with different postures. We mainly focus on
quasi-static scenarios but also test for moving targets. Our
evaluation consists of both single-person case and multiple
person case. For static cases, each subject performs 10 to 15
different postures as he/she will and we collect about 30s of
data for each posture. mmEye runs in realtime and outputs
an image for every 4 CIR recordings. For object imaging, we
test with everyday objects, such as fans, heaters, monitors,
suitcases, efc., that have various shapes, sizes, and materials.

Ground Truth. Prior works that focus on imaging static
objects mainly assume known ground truths of the objects
[LO], [38], [39], [16]. To evaluate human imaging, however,
we could not obtain ground truth from manual measurements
of the target dimensions and shapes. Instead, we extract images
from a Kinect depth sensor by the library provided by [40] to
serve as ground truth. To detect the target of interest from
a Kinect frame, we simply search for a certain depth and
extract all points in that depth. One could perform advanced
segmentation by combining the RGB sensor for this purpose,
which is however out of the scope of this paper. Note that
the measurements and target detection on Kinect both contain
noises, which do not favor our evaluation. The results by
mmEye and Kinect are shifted and interpolated so that their
coordinates are aligned with identical point density.

Evaluation Metrics. It is not easy to define proper metrics
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Fig. 11: Impact of distance on human imaging. A subject stands in front of the device with varying distances and performs

the same posture, as illustrated in the Kinect depth image.
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Fig. 13: Performance comparison among different spatial
spectrum estimators.

to evaluate the imaging quality, although it is intuitive for a
human to tell from the visual results. In addition to qualitative
visual comparisons, we propose two quantitative metrics in
this work:

« Silhouette difference (SD): The percentage of XOR dif-
ference between the mmEye images (after thresholding)
and the Kinect frames, ranging from O (no errors) to 1
(completely different);

« Boundary key-point precision (BKP): The absolute loca-
tion error for several key points on the target boundary.
Since we do not have labeled points for Kinect and
mmEye, we mainly account for the topmost, leftmost,
and rightmost points in our evaluation, which can be
automatically detected.

B. Performance

We now evaluate the imaging quality. Since we cannot
include all the visual imaging results in the paper, the images

= \

(a) Imaging on Rx array (b) Imaging on Tx array

Fig. 14: Imaging on (a)Tx/(b)Rx array. The quality of the
image obtained on Rx array is better than that obtained on
the Tx array.

and videos of our evaluation are provided in [41] for online
access.

1) Human Imaging: We first evaluate imaging performance
for human targets. Fig. [I] and Fig. [0 already illustrate some of
the visual results, which evidently demonstrate the remarkable
imaging quality achieved by mmEye. Now we quantitatively
evaluate the precision over all the testing data using the SD
and BKP metrics.

As shown in Fig. and Fig. mmEye achieves the
median of 27.2% for SD and 7.6cm for BKP when subjects
are about 1m away from the device; while it degrades to the
median of 32.3% for SD and 13.5cm for BKP when subjects
are about 1.5m away. This is mainly because a larger distance
between the target and device leads to a wider beam and a
weaker reflected signal, both affecting imaging quality.

To visualize the degradation of imaging resolution for
different distances between the subject and the device, we
let a subject, performing the same posture, stand in front of
the device with varying distances ranging from 1 meter to
3 meters. The corresponding imaging result, as illustrated in
Fig. E], shows that as the distance increases, the resolution
of imaging degrades gradually and the contour of the human
body becomes blurry especially when the distance is larger
than 2 meters.

User diversity. Fig. and Fig. show the imaging
quality of mmEye for different persons w.r.z. SD and BKP,
respectively. The results show consistently accurate imaging
for different subjects. The slight variations in performance are
due to that the body type and clothing are varying among
the subjects, which can affect the strength of the RF signals
reflected off the human body.

Performance comparison. Now we show the super-resolution
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Fig. 15: Imaging for different static objects. Objects with different shapes, sizes, materials, and surface conditions are tested.
The objects are placed about 1.5 meters away from the device. The shadow overlays show the ground truths obtained by

Kinect.

performance of mmEye by comparing it with existing beam-
forming techniques, including CBF and MVDR. We also
implement and compare two variations of mmEye, i.e., mmEye
with spatial smoothing (SS, as in §lII-B)) and mmEye with
joint transmitter smoothing (JTS, as in to show the
considerable benefits of the proposed JTS algorithm.

Fig. [0 shows the visual results of two subjects using
different methods. As seen, mmEye-JTS achieves the best
imaging results comparable with Kinect, while mmEye-SS
stands the second-best yet is already much worse than mmEye-
JTS. MVDR can see parts of the human body but misses many
others, while CBF does not capture body parts but only detects
the human body as a whole.

Further in Fig. T3] we show the quantitative results of differ-
ent approaches. As for the SD metric, mmEye-JTS achieves
the best performance and mmEye-SS comes in the second
place, which agrees with the visual results shown in Fig. [0}
Note that MVDR performs better than other techniques w.r1.
BKP metric, however, it performs poorly when regarding to
SD metric. This is because the spatial spectrum estimation of
MVDR is more conservative and thus it misses some of the
major parts of the human body, which does not necessarily
increase errors in BKP (e.g., the topmost point does not change
too much). In principle, only good results in both metrics
indicate good quality of imaging.

In addition, the comparison between the JTS and JRS, as
discussed in and is shown in Fig. [T4] It shows
that the quality of the image obtained on Rx array is better
than that obtained on the Tx array due to the reason discussed
in

2) Object Imaging: mmEye can also image objects. We
test real objects of different shape, size, curvature, surface,
and material. Fig. [T3] shows some of the testing objects with
mmEye imaging results, Kinect ground truths, and pictures
displayed. The objects we select reveal different shapes (cylin-
der, square, and circle), materials (plastic, wood, and metal),
size (from about 20 cm to 100 cm in length) As seen, mmEye
can accurately image various objects. Specifically, mmEye
achieves a median accuracy of 8.0 cm in shape estimation of
the objects. The results show that mmEye achieves consistent
performance for both human targets and objects.

3) Case Studies: In the following, we show how mmEye
performs under different scenarios.

Multi-Person Imaging Actually, we already involve multiple
objects in object imaging (§V-B2) since we put the targets
on a standing table. Yet we are more interested in multiple

Fig. 16: Imaging for multiple persons. The two persons stand
about 1.5 meters away from the device. The ground truths are
displayed in the overlay.

Fig. 17: Imaging for a person in motion. A standing person
puts down his arms at normal speed. Videos for continuous
imaging can be found in [41].

person imaging. Fig. [I6 shows two imaging examples of
two subjects with Kinect overlay as ground truths. As seen,
both human figures are well captured, with the heads, feet,
arms, and hands confidently recognized. The results underpin
various applications of mmEye like multi-user gaming and
user activity analysis.

Dynamic Person Imaging. Thanks to the joint transmitter
smoothing, mmEye can achieve imaging with one single
snapshot but does not need successive measurements. Thus it
can effectively image targets in motion. We test both walking
and in-place motion and show some visual imaging results in
Fig. [I7) where a user is moving arms. Not only does mmEye
image the stationary body parts (e.g., the torso, and legs), it
also tracks the moving parts (e.g., arms) successfully.
Through-the-Wall Imaging. While 60GHz signals typically
do not penetrate most obstacles, it is of great interest to
examine if mmEye can image a target behind a thin drywall.
We set up a large wood panel supported by a wood stand
to emulate a drywall and test mmEye’s performance under
this setting. To better validate the performance, we ask the
subject to expose partial of the body to the devices (mmEye
and Kinect). As shown in Fig. [I8] surprisingly, mmEye still
captures a human figure behind the “drywall”, while the Kinect
depth sensor, as a vision-based sensor, is completely occluded



Fig. 18: Non-line-of-sight imaging. Left: The standing subject
slightly raises his right hand (as seen from the figure) and
stretches the left forearm horizontally; Right: The subject is
in a similar posture as in the bottom row of Fig. [0} yet behind
a big wood panel.

Left Middle Right
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Fig. 19: Imaging for a human face. A person sits 30 cm away
from the device and faces the device. Left: The person tilts the
head to the left; Middle: The person keeps the head straight;
Right: The person tilts the head to the right.

by the big wood panel and only sees the exposed parts (i.e.,
hands in both images). The reason that mmEye can see through
the wood panel is that the 60GHz signals can penetrate the
panel and reflect off the human body behind it. Albeit the
reflected signals are much weaker, mmEye is still able to
capture them by the effective BANC algorithm. However, we
observe that the performance does degenerate in NLOS case.
For example, the legs and feet in both figures are partially
missing. It is more obvious when comparing the right figure to
the bottom row in Fig.[9] where the subjects perform a similar
posture. How to enhance the signals and overcome noises in
through-the-wall scenarios remains an attractive problem.
Human Face Imaging. To show the high imaging resolution
when the target is close, we ask a person to sit 30 cm away
from mmEye and face the device. The imaging results are
shown in Fig. and the different head orientations of the
head of the person can be clearly observed. This shows the
potential of mmEye in applications that require high imaging
resolution.

VI. DISCUSSIONS AND FUTURE WORK

Discussions. mmEye takes an important step towards super-
resolution imaging on 60GHz WiFi radios. There are several
limitations though. First, the working range of mmEye is
inherently determined by the 60GHz radio. While our exper-
imental device is specified to support up to 10 m for target
detection, the imaging resolution decreases linearly over the
range. Second, since 60GHz signals can hardly penetrate walls
or most objects, mmEye mainly images objects in a line-of-
sight view but does not perform well for through-the-wall
targets. How to extend the imaging range and enhance in
NLOS scenarios is an immediate next step. Lastly, the imaging
resolution of mmEye degrades with the distance between
the object and the device increasing, resulting in a limited
range for high-resolution imaging. When a subject is within

2 meters, the skeleton structure of human body can been
observed clearly from the RF images as shown in Fig.
and thus the applications requiring high imaging resolution,
such as human pose estimation and human recognition, can
be supported by mmEye. When a subject is far away from
the device (> 2 meters), the applications requiring moderate
imaging resolution, such as multi-person tracking and people
counting, can still be enabled.

Future Work. There are also multiple future directions. The
combination of the JTS and JRS techniques could alleviate
the specularity problem and improve the responsiveness of
the system. Extension to SAR to increase the antenna aperture
would further improve the resolution upon the super-resolution
algorithm of mmEye. The performance for multi-person cases
could also be further optimized. It is promising to study
gesture recognition and multi-user gaming. Given the imaging
results already achieved, it is of interest to study “wireless
vision” problems like target segmentation, pose estimation,
and human identification without face recognition, etc.

VII. RELATED WORK

RF-based Imaging. RF imaging, particularly WiFi imaging,
has been studied with great interest. WiFi signals have been
exploited for various passive sensing, including motion track-
ing [42], [6], activity and gesture classification [3], [4], and
material detection [9]. Object imaging (in outdoor space) with
unmanned WiFi robots has been extensively studied [43], [8],
which however, does not apply to indoor space. Indoor WiFi
imaging using commodity WiFi signals is studied in [10],
[38] with emulated large arrays. The resolution is limited
by inherent WiFi signals on 2.4GHz/5GHz bands [10]. To
improve the precision on WiFi bands, specialized FMCW radar
is designed with large phased array to capture human figures
[7] and pose information [L1], [12]. TagScan [39] employs
RFID for static object imaging and material identification, but
needs dedicated hardware (i.e., RFID reader) to be deployed
on both sides of the target. 60GHz radios are recently used
for precise tracking [26], [44]], vital sign monitoring [27],
[45], material sensing [46], and object navigation [47]. A
recent work [16] exploits RSS analysis to image objects using
a pair of 60GHz devices with the receiver moving. It only
images objects but not humans. And it uses a horn antenna
for steering control, leaving the rich phase information and
phased array beamforming uncharted. Differently, our work
exploits an unseen opportunity of radar processing, a dual role
of emerging 60GHz networking chipsets, and enables super-
resolution imaging for both humans and objects by using the
built-in phased arrays.

Recently, deep learning has been exploited for RF sensing.
A gesture recognition model is proposed in [4] with a large-
scale WiFi dataset, which is publicly available and would play
an important role to the community. Advances in RF imaging
have achieved both 2D and 3D pose construction from WiFi
signals via neural networks [48]], [49]]. However, these works
require extensive training and multiple pairs of transceivers.
In contrast, mmEye offers a training-free approach based on
a single radio.



Camera-based Imaging. Nowadays camera is increasingly
popular for object recognition and segmentation [S0], [S1]],
[52], 53], [54]. While great success has been made for 2D
imaging, to obtain position and depth information, however,
usually requires RGB-Depth cameras like Kinect sensors [25]]
and camera arrays like VICON [55]]. Also, camera-based solu-
tions depend on lighting conditions and are privacy-sensitive.
As a comparison, mmEye aims to enable a depth “camera” by
reusing a commodity networking device, which works without
any light and preserves privacy.

Sonar and Radar Systems. Radar systems have been studied
for decades and can achieve high-precision imaging of objects
and humans [13], [56]. These systems, however, usually use
terahertz [57], laser [58]], or millimeter and sub-millimeter
waves [59], [L3], [60] on special hardware with large aperture,
which are not suitable for ubiquitous applications. Albeit
mmEye also follows a radar-like operation to measure CIR,
it differs by reusing commodity 60GHz networking chipsets
and contributes novel and different algorithms to overcome the
unique challenge of an extremely small aperture.

VIII. CONCLUSION

This paper presents mmEye, a super-resolution imaging sys-
tem towards a millimeter-wave camera on commodity 60GHz
WiFi devices. mmEye contributes a novel super-resolution
imaging algorithm based on MUSIC with joint transmitter
smoothing. Experiments show that mmEye achieves remark-
able imaging performance for both humans and everyday
objects, comparable to that of dedicated depth sensors like
Kinect. mmEye can even image a person behind a thin drywall.
We believe mmEye takes an important step towards ubiquitous
imaging and inspires research on 60GHz WiFi sensing.
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