

WiDance: Inferring Motion Direction using Commodity Wi-Fi for Interactive Exergames

Kun Qian*, **Chenshu Wu***, Zimu Zhou[^], Yue Zheng*, Zheng Yang*, Yunhao Liu* *Tsinghua University, [^]ETH Zurich

May 09, 2017@Denver, Colorado

Exergames bring more than just fun

• Exergames can improve the fitness, health and social involvement of players

Becoming increasingly popular! Exergames anywhere, anytime!

Various Exergame Interfaces

• Various technologies for interactive exergames

CHI'17

Computer Vision

Sensors & Controllers

Ultrasound

Limitations

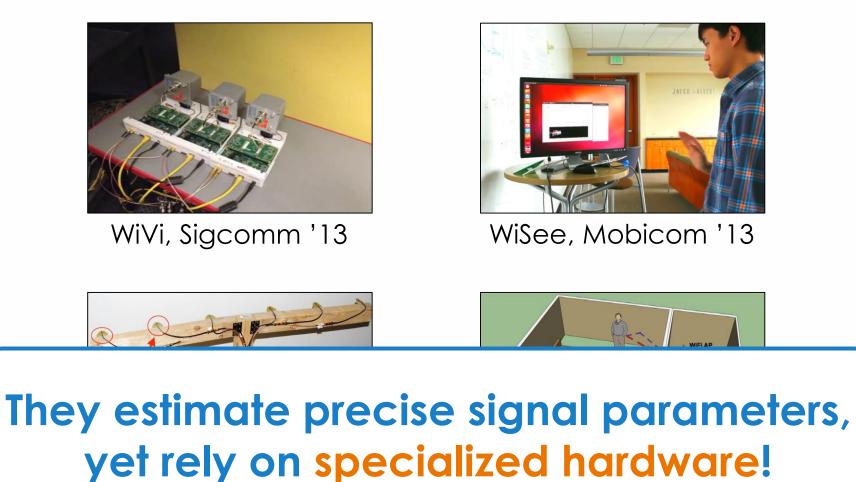
- Limited field of view Dedicated devices Usually expensive
- Device attachment High installation cost Not ubiquitous

Demand for a more ubiquitous solution to fit fragmented free time and space for modern life

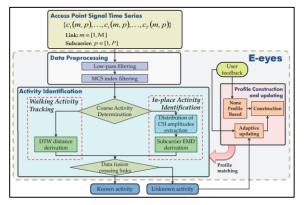
Leveraging Commodity WiFi

- In contrast, the wireless approach is superior in
 - Ubiquitous: Almost everywhere installed infrastructure
 - Low-cost: off-the-shelf WiFi devices
 - Non-invasive: not required to wear/carry any devices
 - Omi-directional & no lighting requirement
- WiFi-based sensing supports more than exergame

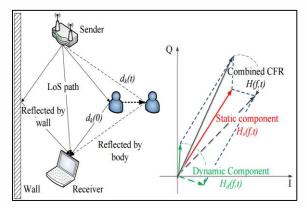
Navigation



Gait Analysis

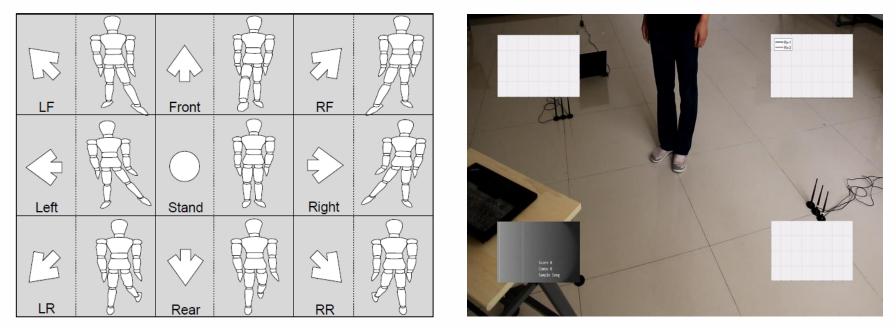


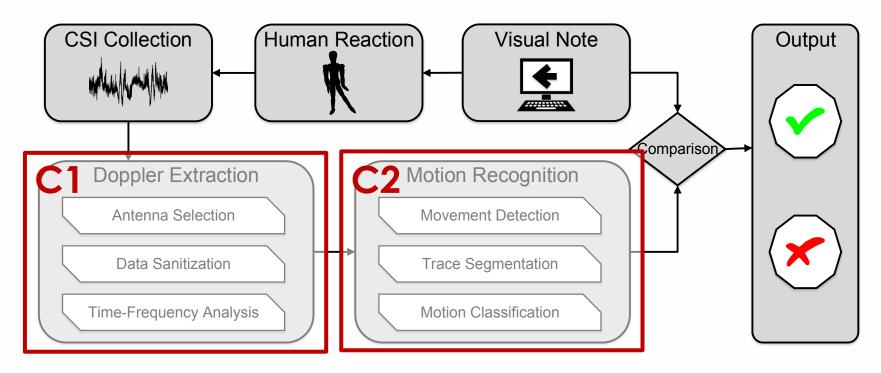
Activity Recognition


Existing Arts

Existing Arts

E-eye, Mobicom '14

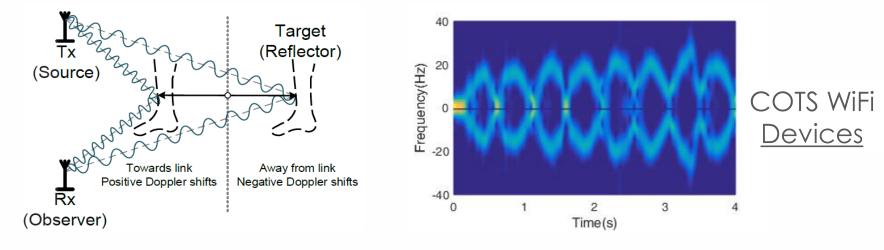

CARM, Mobicom '15


Though using COTS Wi-Fi, they require extensive training efforts.

WiDance

- A passively interactive dancing pad-like exergame using **OFF-THE-SHELF** WiFi devices **WITHOUT** training
 - Accurately deriving motion-induced Doppler shifts
 - Extracting motion directions for exergame designs

WiDance Design



Two key challenges

- Derive full information of Doppler shifts from imperfect Wi-Fi.
- Recognize motion direction from Doppler effect for game.

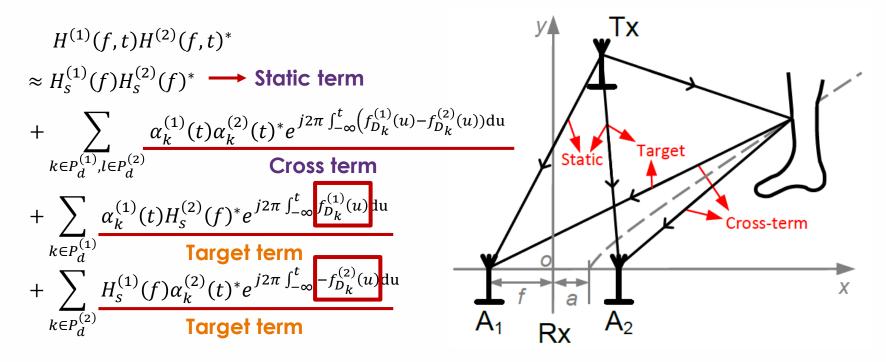
Doppler Effects

• Human motions induce Doppler shifts in signals

Channel State Information

$$H(f,t) = H_s(f) + \sum_{k \in P_d} \alpha_k(t) e^{j2\pi \int_{-\infty}^t f_{D_k}(u) \mathrm{d}u}$$

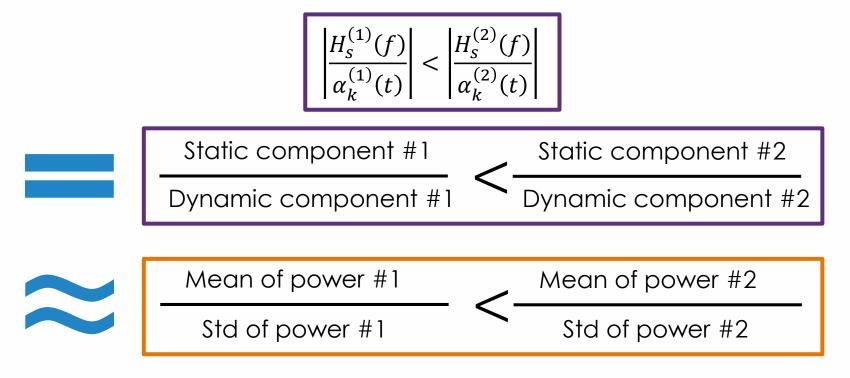
Doppler Freq. Shifts


<u>CHĽ 17</u>

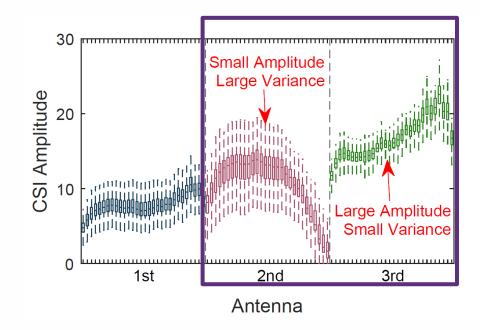
 However, due to uncertain phase noise, only absolute values are available by using CSI power^[1]

[1] CARM, Mobicom '15

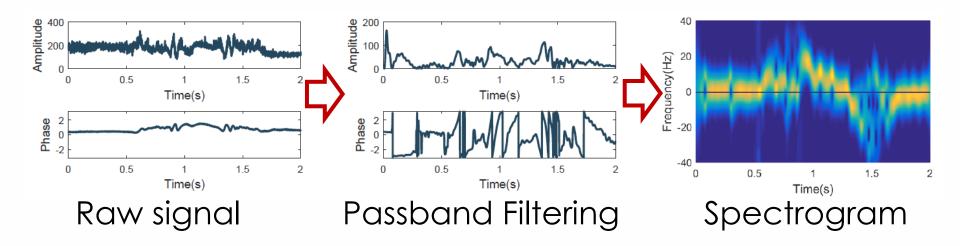
Doppler Extraction


- Remove unknown phases with multiple antennas
- Conjugate multiplication of signal of **TWO** antennas

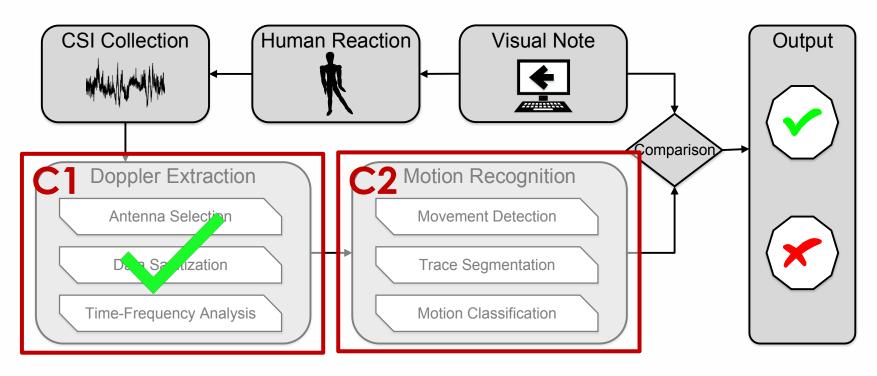
Yet Target terms contain both $f_{D_k}^{(1)}$ and $-f_{D_k}^{(2)}$!


Doppler Extraction

• A sufficient condition is the term with true Doppler frequency shift has higher power


Antenna Selection

- Select two antennas out of the typical three.
 - Antenna #1: Small Amplitude, Large Variance.
 - Antenna #2: Large Amplitude, Small Variance



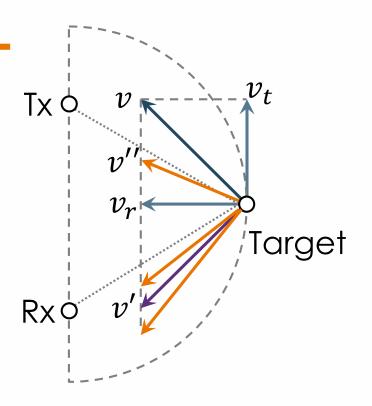
Signal Processing Procedure

- Passband filtering
 - Remove static terms, low-frequency interferences and burst noises.
- Time-Frequency Analysis (PCA + STFT)
 - Spectrogram of Doppler frequency shifts.

Problem Statement

- Challenges
 - Derive motion-induced Doppler frequency shifts from Wi-Fi.
 - Recognize motion direction from Doppler effect for game.

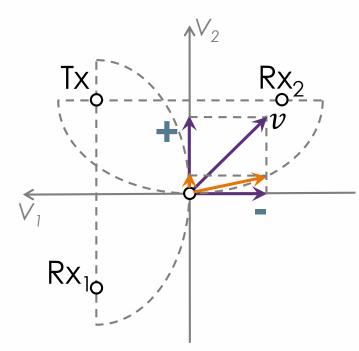
Motion Recognition


• One link is insufficient for direction recognition.

Infinite possible solutions of v

× The symmetric distribution of radial velocity v VS. v'

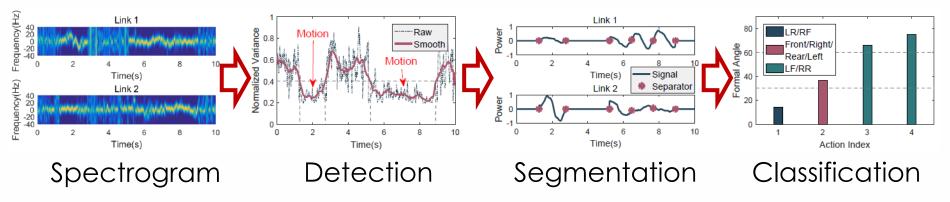
× Users perform reactions at unknown speed


v VS. v''

CHI'17

Motion Recognition

• Solve ambiguity with minimum cost of two orthogonal links.



Determine the motion direction by:

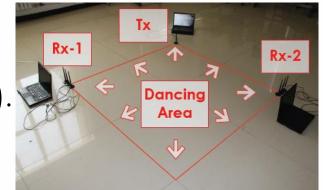
- Direction of radial velocity.
- Ratio of radial velocity.

Motion Recognition

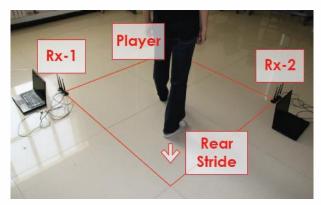
- Movement Detection
 - Distribution of signal power in frequency domain.
- Trace Segmentation
 - Detection of pair of prominent peaks
- Motion Classification
 - Direction of radial velocity.
 - Ratio of radial velocity.

СНІ'17

Experiment & Evaluation


- Overall performance
- Performance of recognition scheme
- Performance of extraction scheme
- Performance of compound gestures
- Performance comparison

- Impact of user diversity
- Impact of action range
- Impact of note interval
- Impact of area size
- Impact of transmission rates


CHI'17

Experiment

- Setup
 - 3 laptops with Intel 5300 NICs.
 - 2 links on Channel 165 (5.825GHz).
 - Packet rate: 1024Hz.
 - Tx power: 15dBm.
- Recruitment
 - 30 participants.
 - Over 10, 000 actions.
- Baselines
 - HMM-WiDance
 - CARM (ACM MobiCom'15)

Dancing Area

User Action

CHI'17

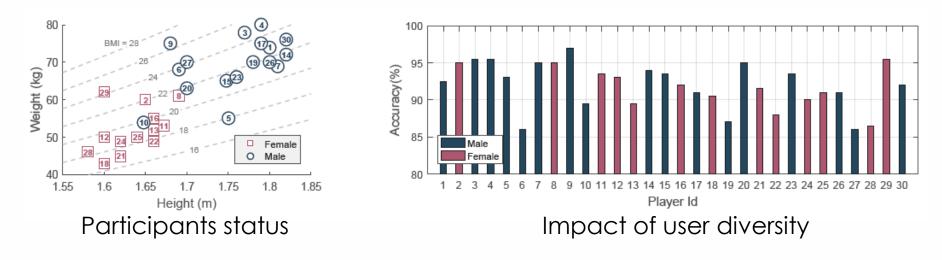
Overall Performance

- WiDance vs. HMM-WiDance
 - Non-learning recognition scheme achieves comparable accuracy with the unfavorable learning method.
- WiDance vs. CARM
 - Only with both amplitude and sign of Doppler frequency shifts can motion directions be effectively recognized.

	Front	97.4	0.7	0.0	0.0	0.1	0.0	0.0	1.7
Actual	RF	- 1.8	87.7	10.6	0.0	0.0	0.0	0.0	0.0
	Right	- 0.1	1.6	92.4	5.8	0.1	0.0	0.0	0.0
	RR	- 0.1	0.0	1.3	88.3	10.2	0.0	0.0	0.0
	Rear	- <mark>0</mark> .1	0.0	0.0	1.1	96.0	2.8	0.0	0.0
	LR	- 0.0	0.0	0.0	0.0	7.5	91.3	1.2	0.0
	Left	- 0.3	0.0	0.0	0.0	0.1	7.9	90.9	0.8 -
	LF	- 0,4	0.0	0.0	0.0	0.0	0.0	7.7	91.9
		Front	RF	Right	RR	Rear	LR	Left	LF
		Predicted							

WiDance (Overall 92%)

Front	99.2	0.5	0.0	0.0	0.2	0.0	0.0	0.2 -	
RF	- 0 .9	97.3	1.6	0.2	0.0	0.0	0.0	0.0 -	
Right	- 0.0	4.5	95.3	0.2	0.0	0.0	0.0	0.0 -	
RR Rear	- 0.0	0.2	7.9	89.7	2.1	0.0	0.2	0.0 -	
Frear Act	- 0.0	0.0	0.8	4.7	90.1	4.5	0.0	0.0 -	
LR	0.0	0.0	0.2	0.0	2.0	93.2	4.7	0.0 -	
Left	- 0.0	0.0	0.0	0.0	0.0	0.0	98.8	1.2 -	
LF	1.9	0.0	0.0	0.0	0,1	0.0	1.5	96.5	
	Front	RF	Right	RR	Rear	LR	Left	LF	
	Predicted								

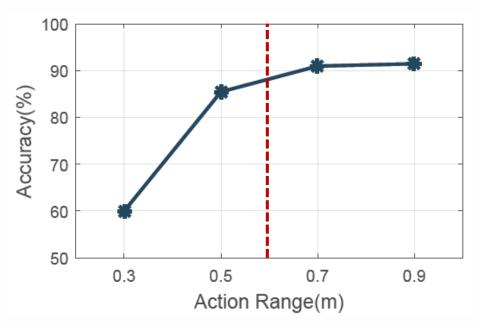

Front	58.9	7.1	13.6	4.2	1.5	1.0	7.4	6.2
RF	- <mark>5.0</mark>	72.8	4.4	4.4	3.0	5.5	4.9	0.2 -
Right	- 4.4	0.8	47.9	27.0	9.4	2.1	5.5	3.0 -
RR Rear	- 0.3	0.2	14.8	68.7	8.2	2.0	1.5	4.4 -
P Rear	- 0.2	0.0	7.3	13.2	66.7	9.5	3.1	0.2 -
LR	- 1.8	3.5	2.6	4.7	15.6	57.4	14.4	0.0
Left	- <mark>6.8</mark>	2.4	6.0	9.7	16.0	11.3	47.6	0.2 -
LF	- 3,4	1.3	5.0	13.3	0.3	0.7	3,7	72.3
	Front	RF	Right	RR	Rear	LR	Left	LF
	Predicted							

CARM (Overall 60%)

HMM-WiDance (Overall 95%)

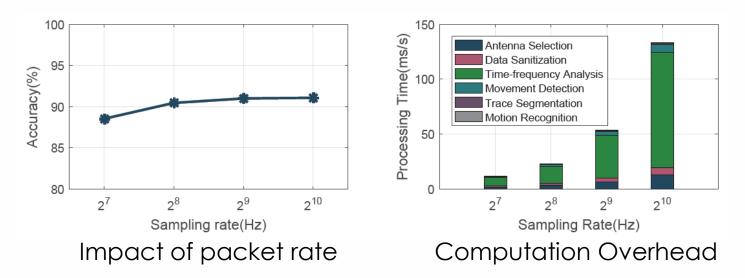
20

Impact of User Diversity



- Participants have various weights and heights
- And different levels of body coordination and familiarity with dancing games
- WiDance recognizes actions of all participants with accuracy higher than 85%

⊂ні'17


CHI'17

Impact of Action Range

- Smaller action ranges leads to
 - shorter action time
 - smaller action speed
- >90% when the action range is larger than 0.6m

Impact of Packet Rate

- With decreasing of transmission rate,
 - Accuracy of WiDance slightly degrades.
 - Processing time of WiDance exponentially reduced.
- Tradeoff processing time and accuracy

CHI'17

Discussion

- Multiple moving objects.
 - Doppler shift of the dancer might be obfuscated by the similar shift of the intruder.
- Limited detection range.
 - Currently 4m X 4m, easily deployed at different location
 - Deploying more systems in the area of interest.
- Potential applications.
 - Smart home controller.
 - Indoor localization.

Conclusion

- Extracting complete Doppler frequency shifts from COTS Wi-Fi.
 - Doppler effect of multiple antennas.
 - Antenna selection strategy.

• Recognizing motion directions with Doppler effect.

- Orthogonal links model.
- Light-weight non-learning recognition scheme.

• A proof-of-concept interactive exergame WiDance.

 an overall recognition accuracy of 92% in typical indoor environments without training.

Thanks! Q&A

Chenshu Wu Tsinghua University

wucs32@gmail.com https://www.cs.princeton.edu/~chenshuw