

Widar: Decimeter Level Passive Tracking via Velocity Monitoring with Commodity Wi-Fi

Kun Qian*, Chenshu Wu*, Zheng Yang*, Yunhao Liu*, Kyle Jamieson^

*School of Software, Tsinghua University

^Department of Computer Science, Princeton University

Motivation

Human tracking inspires various applications.

Navigation

Gait Analysis

Activity Recognition

- And tracking with Wi-Fi is superior in
 - Ubiquitous: Almost everywhere installed infrastructure.
 - Low-cost: Off-the-shelf Wi-Fi devices.
 - Non-invasive: not required to wear/carry any devices.

Existing Arts

WiVi, Sigcomm '13

WiTrack, NSDI '14

They estimate precise signal parameters, yet rely on specialized hardware!

Existing Arts

E-eye, Mobicom '14

CARM, Mobicom '15

WiKey, Mobicom '15

Though using COTS Wi-Fi, these solutions focus on training-based activity recognition, yet not tracking.

Problem Statement

- Passive tracking with COTS Wi-Fi devices.
 - Deriving human's moving velocity and location from Wi-Fi signals without training.

Key Insight

Modeling interaction between CSI and motion.

- Human movement causes length change of reflecting path.
- Spectrogram of CSI series shows the frequency shift that corresponds to change rate (PLCR).

Challenges

Ideal Spectrograms

Real Spectrograms

We introduce CSI-Mobility model.

From PLCR to Velocity

- From view of geometry,
 - Radial velocity v_r changes the path length and causes Doppler effect, while tangential velocity v_t not.

- From view of algebra,
 - Single links yields one

Single Link is insufficient for tracking!

 $l = (l_x, l_y)^T$ - Location. a_x, a_y - Coefficients decided by l.

CSI-Mobility Model

- By adding more links, velocity can be determined.
- Solving the equation system of all links.

$$- \mathbf{A}\vec{v} = \vec{r}$$

- Where
$$\mathbf{A} = \begin{pmatrix} a_x^{(1)} & a_x^{(2)} & \dots & a_x^{(L)} \\ a_y^{(1)} & a_y^{(2)} & \dots & a_y^{(L)} \end{pmatrix}^{\mathrm{T}}$$
, $\vec{r} = (r^{(1)} \quad r^{(2)} \quad \dots \quad r^{(L)})^{\mathrm{T}}$

$$- \vec{v} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\vec{r}$$

CSI-Mobility Model Loss of PLCR Signs

 Two ambiguous solutions always exist, no matter how many links are added.

CSI-Mobility Model PLCR Signs Identification

 Step I: Opportunistically derive moving directions from subcarriers delay information.

Geometric relation of two subcarriers

Delayed waveforms of subcarriers

- However, the approach is robust only when,
 - Large moving velocity.
 - Large incident angle between moving direction and link.

CSI-Mobility Model PLCR Signs Identification

 Step II: consecutiveness of human walking during short time.

- Solving the equation system at time k.
 - $\mathbf{A}_k \vec{v}_k = \mathbf{R}_k \vec{s}_k$
 - Where $\mathbf{R}_k = \text{diag}(|r^{(1)}| |r^{(2)}| ... |r^{(L)}|)^T$, $\vec{s}_k = (s_k^{(1)} s_k^{(2)} ... s_k^{(L)})^T$
 - $\vec{v}_k = \left(\mathbf{A}_k^{\mathrm{T}} \mathbf{A}_k\right)^{-1} \mathbf{A}_k^{\mathrm{T}} R_k \vec{s}_k$
 - $\vec{s}_k = \operatorname{argmin}(\operatorname{err}_{l,k} + \beta \operatorname{err}_{v,k})$
 - $\operatorname{err}_{l,k} = ||\mathbf{A}_k \vec{v}_k R_k \vec{s}_k||$ is the PLCR fit error.
 - $\operatorname{err}_{v,k} = ||\mathbf{A}_k \vec{v}_k \mathbf{A}_{k-1} \vec{v}_{k-1}||$ is the velocity deviation error.

CSI-Mobility Model PLCR Extraction

- Leveraging acceleration constraints of PLCR.
 - $a(t) = \frac{d}{dt}r(t) \le 2\frac{d}{dt}v(t)$
 - PLCR acceleration is bounded by velocity acceleration.
- Manipulation of the spectrogram $W_{T\times F}$.
 - Given the maximum PLCR acceleration,
 - By properly decimating the spectrogram,
 - PLCR in adjacent time samples is bounded within one bin, i.e. $\Delta_f = 1$.
- Thus, global optimal PLCR series is obtained as:
 - PLCR = PLCR(argmax_{f₁,...,f_T} $\sum_{i=1}^{T} W_{i,f_i}$)
 - $s.t. |f_i f_{i-1}| \le 1; i = 2, ..., T$

Implementation Issues

- Initial location estimation.
 - Search through whole tracking space discretely.
- Initial velocity estimation.
 - Set the initial velocity as small disturbance.
 - Values in a pair of symmetric vectors.
- Successive tracking.

$$- \vec{l}_{k+1} = \vec{l}_k + \vec{v}_k \Delta t$$

- Trace refinement.
 - Reinitiate tracking process at vulnerable moments.

1st Segment

2nd Segment

3th Segment

4th Segment

Evaluations & Results

Experiment

Devices

- 3 mini PC with Intel 5300 NICs.
- 6 links (3 per receiver).
- Packet rate: 2000 Hz.
- Tx power: 15dBm.

Setup

- Deployment schemes.
- Trace shapes.
- Volunteers.
- Ground truth
 - Video-based tracking
- Basement.
 - CARM (MobiCom '15)
 - WiDir (Ubicomp '16)

Experimental field

Coordinate transformation

Performance on Velocity

Velocity Direction

- Widar achieves the highest estimation accuracy, with a median error of 13%, for velocity magnitude.
- Widar achieves an 80-percentile error of 20° for velocity direction.

Performance on Location

• Widar achieves a median tracking error of 25cm and 38cm, 0.8 with and without initial location, and 90-percentile tracking error of 78cm.

Location Error

- Decimeter-level Passive Tracking.
- Tracking examples

Impact of Walking Direction

Deployment schemes

Impact of Direction

- Evaluation is carried out in Setup 2.
- Widar achieves consistently high accuracy through all walking directions.

Impact of Setup

Deployment schemes

Impact of Setup

- The largest errors emerge at the direction which is the most parallel with all links.
 - Setup 1: 135°
 - Setup 2: 0°

Impact of Walking Distance

 Due to lack of localization scheme for calibration, tracking errors accumulates at a moderate rate.

Discussion & Future Work

Model-based passive localization with Wi-Fi.

LiFS, MobiCom '16

DynamicMUSIC, Ubicomp '16

- These works target at localization, instead of accurate continuous velocity tracking.
- They can complements Widar for initial location and opportunistic calibration.
- Not a easy problem...

Conclusion

- Widar's CSI-Mobility model
 - Geometrically quantifies the relationships between CSI dynamics and human mobility.
 - Simultaneously estimates human's moving velocity and locations using COTS Wi-Fi devices.
 - Training-free: extract environment-independent signal feature.
- Decimeter-level passive tracking system.
 - Median location error of 25cm and 38cm with and without initial positions.
 - Median relative velocity error of 13%.

Thanks! Q&A

Kun Qian Tsinghua University

qiank10@gmail.com http://tns.thss.tsinghua.edu.cn/~qiankun/

