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Abstract—Non-invasive human sensing based on radio signals
has attracted numerous research interests and fostered a broad
range of innovative applications of localization, gesture recogni-
tion, smart health-care, etc, for which a primary primitive is to
detect human presence. Previous works have studied to detect
moving humans via signal variations caused by human move-
ments. For stationary people, however, existing approaches often
employ a prerequisite scenario-tailored calibration of channel
profile in human-free environments. Based on in-depth under-
standing of human motion induced signal attenuation reflected by
PHY layer channel state information (CSI), we propose DeMan, a
unified scheme for non-invasive detection of moving and station-
ary human on commodity WiFi devices. DeMan takes advantages
of both amplitude and phase information of CSI to detect moving
targets. In addition, DeMan considers human breathing as an
intrinsic indicator of stationary human presence and adopts
sophisticated mechanisms to detect particular signal patterns
caused by minute chest motions, which could be destroyed by
significant whole-body motion or hidden by environmental noises.
By doing this, DeMan is capable of simultaneously detecting
moving and stationary people with only a small number of
prior measurements for model parameter determination, yet
without the cumbersome scenario-specific calibration. Extensive
experimental evaluation in typical indoor environments validates
the great performance of DeMan in case of various human
poses and locations and diverse channel conditions. Particularly,
DeMan provides detection rate of around 95% for both moving
and stationary people, while identifies human-free scenarios by
96 %, all of which outperforms existing methods by about 30%.

Index Terms—Non-invasive, human detection, calibration-free,
human breathing, Channel State Information

I. INTRODUCTION

Recent advances in WiFi techniques have enabled a range of
ubiquitous applications where wireless signals convey human
body induced radio shadowing and reflections. Typical appli-
cations include human detection for intruder detection, emer-
gency responses, and in-home children and elderly monitoring.
Pioneer efforts have explored the possibility of extracting
motion information from wireless signals to localize or track
whole-body motions [1]-[3] or even gestures [4], [5] non-
invasively. The term “non-invasive”, a.k.a passive or device-
free, means that people are not assumed to carry any wireless
device. The primary underpinning is that a person’s movement
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can modulate wireless signals and result in temporal changes
that are observable from received signals [1]. The mobility of
to-be-observed users makes a prerequisite of existing passive
human detection systems. However it is intrinsically challeng-
ing to detect stationary users based on radio reflections [6].
To detect the presence of stationary people, existing schemes
employ a prerequisite calibration of channel profile in human-
free environments, and simplify human presence as shadowing
on the Line-Of-Sight (LOS) path [7]. The calibration needs to
be conducted offline to collect a link profile for human-free
settings and online detection is accomplished by comparing
the real-time measurements against the static profile. Despite
the cumbersome scenario-tailored profiling, such schemes may
still fail due to temporal environmental unstableness and
multipath effects [8].

In this work, we ask the following questions: Is it possible
to detect stationary people passively without any scenario-
tailored calibration? Furthermore, can we build a unified
Jframework with commodity WiFi devices to simultaneously
detect both moving and static persons? We investigate the in-
terference of human presence on wireless signals and demon-
strate that the rhythmic chest’s rise and fall that alternate
between inhaling and exhaling of human breathing induce
repetitive changes on received signals, shedding promising
lights on the non-invasive detection of static people. To deliver
these observations into a practical human detection scheme,
multiple challenges need to be overcome: 1) How to discover
and harness weak human breathing patterns from wireless
signals in the presence of environmental unstableness? 2) How
to integrate the detection of moving and stationary humans into
a unified framework without obscuring the minute breathing-
induced chest motion with significant body motions?

To address these challenges, we propose DeMan, a unified
scheme for non-invasive DEtection of moving and stationary
huMAN with commodity WiFi devices. DeMan leverages
the PHY layer Channel State Information (CSI) provided by
commercial WiFi products, which offers fine-grained channel
description at the granularity of OFDM subcarriers [9]. To
differentiate macro human movements and micro chest motion
of breathing, we propose a motion interference indicator based
on the variances of CSI to provide a primary judgement of two
cases: 1) if a moving person is more likely to present, De-
Man starts the moving human detection module; 2) otherwise
the stationary human detection module is chosen.

On one hand, to detect moving targets, we explore the
full potential of CSI in both perspectives of amplitude and
phase. We demonstrate that phase information is similarly
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or even more sensitive to environmental changes, which,
however, has not been sufficiently utilized to the comparable
extent of amplitude [10]. To extract environment-independent
features of both signal amplitude and phase, we propose the
maximum eigenvalues of correlation matrices of successive
measurements to characterize the variations of temporal wire-
less signals.

On the other hand, to detect stationary people, DeMan pro-
cesses the received signals with a bandpass filter to extract
the signal components within an interest frequency band
(corresponding to the normal frequency range of human
breathing). Then we justify a sinusoidal model to formulate the
breathing-induced wave-like patterns on wireless signals and
detect a breathing person by searching for periodic signals of
concerned frequencies. DeMan further harnesses the frequency
diversity of modern OFDM modulation to enable static people
detection under complicated and diverse human poses and
locations.

We prototype DeMan on commodity WiFi devices and
evaluate its performance in various scenarios of typical indoor
buildings. Experiment results, from over 8-hour measurements
in one week, demonstrate that DeMan achieves respective true
positive rate for moving and stationary people of 94.82%
and 93.33% and a true negative rate of 96.25% for human-
free scenarios, outperforming previous approaches by about
30%. DeMan uses a small number of prior measurements to
determine several scenario-independent parameters, which are
then applicable to different contexts. Consequently, DeMan re-
quires no scenario-specific calibration, which is beyond the
achievement of previous works for stationary target detection.
We envision it as an important step towards fully practical
technology of device-free human detection.

In summary, the core contributions are as follows:

o We propose a unified framework for simultaneous detec-
tion of moving and stationary people. To the best of our
knowledge, this is the first solution that converges the
advantages of purely WiFi-based, scenario-specific cali-
bration free, and non-invasive together in the literature.

o We design and implement a unified detection approach
for stationary persons by modeling and exploiting minute
chest motions of human breathing as an intrinsic indicator
for human presence. Different from power fading, chest
motion analysis enables DeMan to accurately detect sta-
tionary people not only on the direct LOS path, but also
on the reflected paths with a single wireless link, resulting
in an extended sensing coverage.

+ We investigate previously unexplored phase information
of CSI and propose a novel method to extract and analyze
phase feature, which is demonstrated to improve the
accuracy and sensitivity of moving target detection.

The rest of the paper is organized as follows. We review
the related works in Section II and present some preliminaries
in Section III. Section IV presents an overview of the system
as well as designs of the motion interference indicator and
moving target detection, while details of stationary target
detection are introduced in Section V. Section VI provides the
performance evaluation. We discuss the limitations and future
works in Section VII and conclude this work in Section VIII.

II. RELATED WORKS

The design of DeMan is closely related to the following
categories of research.

Wireless Non-invasive Human Detection. Wireless non-
invasive human detection systems detect and localize humans
via their impact on received signals, while the targets carry
no wireless-enabled devices. The basic principles differ for
stationary and mobile targets. To detect moving users, the vari-
ance of the RSS measurements is directly compared with a pre-
defined threshold [1], while the mean of RSS measurements is
compared with that of a normal profile when there are no users
in the monitored area to detect motionless users [7]. Recent
advances explore stationary and moving target detection based
on signal envelope features [6] at the cost of a dense deployed
wireless links. Some works develop sophisticated mechanisms
for through-wall imaging of subjects (including occluded ones)
using RF signals [11]-[13]. One of the latest innovations [14]
develops a theoretical and experimental framework with only
WiFi power measurements for the problem. In this work, we
also aim at detecting both stationary and moving humans, yet
dive into the PHY layer in purpose of achieving robust detec-
tion with a single wireless link in even multipath-dense indoor
environments. Our scheme is able to distinguish the impact of
a stationary human and static environmental interference such
as the location change of furniture by capturing the unique
breathing patterns.

Wireless-based Gesture and Activity Detection. Since
wireless signals may be reflected differently with changes of
human postures, numerous efforts have utilized wireless sig-
nals to detect whole-body [4], [15] or hand gestures [16] and
daily activities [17] by analyzing the received signal patterns.
Some work extracts Doppler features from received signals
using customized OFDM signal processing [4], or leveraging
Inverse Synthetic Aperture Radar (ISAR) to enable through-
wall gesture sensing [15]. Alternatively, a pattern matching
based approach can be employed to recognize hand gestures
[5] or daily activities [17] on commodity WiFi devices. The
tradeoff, however, is to build up a gesture profile database in-
advance. In this work, we also aim to detect humans via their
reflected signal patterns, but target at the much more micro
motion, i.e. breathing. We try to capture the tiny impact of
breathing on wireless signals harnessing the repetitive patterns
of breathing.

Contactless Breath Detection. Breath is an important
vital sign and active research has been conducted to monitor
breath via chest movements or inhaling airflow measured by
wearable sensors [18]. A promising alternative is to exploit
wireless signals to detect breathing unobtrusively by cap-
turing chest motions during breathing [19] utilizing costly
radar infrastructure. Some pioneer work has demonstrated
the viability of detecting breaths using commodity wireless
devices [20], yet requires multiple transceivers to create a
dense network of links. The closest to our works are [21] and
[22], which enable non-intrusive breath monitoring on a single
wireless link with directional antennas and dedicatedly placed
transmitter-receiver pairs, respectively. Nevertheless, they are
effective only when people present closely to short LOS links.
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Figure 1: System architecture of DeMan

Moreover, these systems are primarily designed for health-care
and sleep monitoring applications, where persons are required
to be lying on beds. Hence, they cannot be directly adopted
for intruder detection or other ubiquitous applications, where
users are not expected to always appear at a fixed location.
Unlike [20]-[22], DeMan is able to detect breaths over a
wider area without dense links and designed link placement,
thus extending its applications to intruder detection, emergency
responses, and in-home children and elder monitoring, etc,
where user presence is unrestricted and unpredictable.

CSI-based Indoor Localization. As a promising substitute
for MAC layer RSSI, the fine-grained PHY layer CSI available
on commercial WiFi devices has raised increasing enthusiasm
on CSI based indoor localization with meter-level accuracy
[23], [24]. Since CSI depicts frequency diversity at the gran-
ularity of OFDM subcarriers, it also benefits non-invasive
human detection as a more informative signature, and has
been employed in non-invasive motion detection [25], entity
localization [23], crowd counting [26] and walking activity
recognition [17]. Our human detection system also builds
upon the fine-grained CSI measurements. Nevertheless, unlike
existing efforts that either assume moving targets [25], [26] or
require signature collection and matching [17], we provide
a unified framework to detect both moving and stationary
humans without prior signature collection.

III. PRELIMINARY

With the increase of operating bandwidth and the need
to support MIMO techniques, current WiFi devices start to
track fine-grained channel measurements leveraging Orthogo-
nal Frequency Division Modulation (OFDM). An OFDM WiFi
transmitter (IEEE 802.11a/g/n) sends bits through multiple
subcarriers in parallel, and the receiver detects the start of
each OFDM packet via a pre-defined preamble [27]. The
preamble also facilitates the receiver to estimate channel
conditions on each subcarrier [28]. Channel condition on each
subcarrier involves both amplitude attenuation and phase shift,
and can be represented by a complex number. With commodity
WiFi Network Interface Cards (NICs) such as Intel 5300 and
slight firmware modification, a group of 30 subcarrier channel
measurements can be revealed to upper layer users in the
format of Channel State Information (CSI) [9]:

Hy, = || Hyl|e? £ o (1)

where H}, is the CSI at the subcarrier k£ with central frequency
of wy, and ||Hg|| and /Hj, denote its amplitude and phase,
respectively.

Compared with the conventional MAC layer Received Sig-
nal Strength Indicator (RSSI), CSI offers finer-grained infor-
mation in two aspects:

o Phase Information: In multipath-dense indoor environ-
ments, wireless signals usually propagate to the receiver
through multiple paths. These multipath components can
superpose either constructively or destructively depending
on their relative phases. Since RSSI only offers amplitude
information, previous research explores indirect proxy
such as fade level to infer the phase superposition status
[8]. In contrast, CSI provides both subcarrier phase and
amplitude information, which holds potential for more
sensitive and accurate motion detection.

o Frequency Diversity: In essence, RSSI depicts the total
received power across all subcarriers. Therefore, RSSI
fails to characterize multipath propagation, which may
convey the subtle breathing patterns. Since the subcarriers
in OFDM tend to fade independently, CSI brings about
opportunities to optimize and magnify the breathing pat-
terns leveraging frequency diversity. It may also extend
detection range since breathing patterns from a NLOS
path may also be captured and resolved.

In a nutshell, CSI exposes a finer-grained spectral structure
of wireless channels. In the subsequent sections, we strive
to harness the subcarrier phase and amplitude information to
design a unified framework for both moving and stationary
human detection.

IV. DEMAN DESIGN

This section presents the design of DeMan in a top-down
manner, with emphasis on moving target detection. As a uni-
fied framework, DeMan simultaneously detects both moving
and stationary targets in a generic processing flow without
scenario-specific pre-training. Yet due to the unique chal-
lenges involved in stationary target detection without scenario-
specific calibration, we defer the details on stationary target
detection in Section V. Here a target refers to a person only
and we use the two words interchangeably henceforth.

A. Overview

The architecture of DeMan mainly consists of two compo-
nents: moving target detection and stationary target detection.
As shown in Figure 1, DeMan works as follows.

DeMan initializes by extracting CSI compatible with IEEE
802.11n standards on commodity NICs. The raw CSI mea-
surements are passed through the Hampel identifier [29] to sift
outlier observations [17]. Afterwards the CSIs are processed
by a lightweight motion indicator to coarsely decide whether
there is a moving person. If the answer is YES, the CSI
measurements are further fed into the moving target detection
module for finer-grained motion detection. Otherwise, the
stationary target detection module is triggered to identify static
human presence. DeMan reports a “detected” event if either
module outputs affirmatives. Otherwise, no person is detected
within the monitoring area.

To reliably detect moving humans, we exploit both ampli-
tude and phase information conveyed in CSI measurements.



4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, XX 2015

T R

i i inhale *
Transmitter Receiver

(a)

(c)

exhale
mhulé‘\._‘_

(d) (e) ()

Figure 2: An illustration of impacts of human presence on
signal propagation. (a) Static environment without human. (b)
Moving human continuously induces significant changes on
RF signals. (c) Breathing motion on the direct LOS path
incurs different extent of shadowing. (d) Breathing motion
shifts signal propagation between LOS and NLOS paths. (e)
Breathing motion alters a reflection path that is generated by
the human body. (f) Breathing motion modulates an existing
reflection path.

We calculate the correlation matrices for the complex CSI
measurements for each subcarrier, and extract the corre-
sponding maximum eigenvalues for each correlation matrix.
The maximum eigenvalues are then combined into a two-
dimensional feature to infer the presence of moving people.

To detect stationary persons without scenario-tailored cal-
ibration (profiling and comparing with signal characteristics
collected in a “human-free” environment for each case), we
harness the observation that humans, even when standing still
or remaining seated, exhibit unique “motion” patterns like
breathing. We first filter the CSI measurements to suppress
signals irrelevant to breathing frequencies. The filtered CSI
sequences are then fitted with a sinusoidal breathing model to
estimate its dominant frequency. If the estimated frequency
falls within the frequencies of normal human breaths, the
presence of a person is detected. Otherwise, the stationary
target detection module announces negative.

B. Motion Interference Indicator

It is widely recognized that RF signals would fluctuate
remarkably when objects move within the area of interests, and
remain stable in case of no motion interference [1], [25]. The
motion interference indicator exploits such motion-induced
signal fluctuation to infer potential moving persons.

As shown in Figure 2b, when a person passes through a
wireless link, his/her presence will continuously violates the
original propagation paths (either LOS or reflection paths). In
contrast, as shown by other figures in Figure 2, the propagation
paths experience subtle changes in case of stationary persons
Or NO person presence.

To validate these observations, we first conduct primary
measurements in case of moving human, stationary human,
and no human respectively, with a commercial wireless router
as transceiver and a laptop as receiver. Since we intend
to distinguish the case of mobile people from other cases,

data collected in presence of static human and no human
are integrated into one category marked as “no movements”
here. Figure 3 experimentally demonstrates the signal strength
fluctuations of measurements with and without human move-
ments, each for 5 seconds. As is shown, human movements
can induce changes of up to 4dB in signal envelope, while
changes caused by electronic noise, quantization errors and/or
human breathing in stationary scenarios are mostly limited
within only 1.5dB. In other words, CSI exhibits remarkably
larger variations in case of moving humans than in case of
static humans or no human, although CSI is also sensitive to
breathing motion of static humans as we demonstrate later.
Denote the mean-removed signal strength as X. Then X is
expected to follow a zero-mean Gaussian X ~ N(0,02).
Fusing more data together, Figure 4 further consolidates the
observation that human motion induces consistently larger
variances o2 than static cases.

Motivated by these observations, we build a lightweight
motion interference indicator based on the variance of signal
envelope using a hypothesis testing:

S

2 2
0% > O3 (m)
S, 1 o2< Ufh(s)

2

where S,, and S, indicate the state of motion and static
case, respectively. afh(m) and Uch(S) denote the corresponding
threshold to trigger moving target detection and stationary
target detection. Recall Figure 4, there are a small portion
of cases where the variances of motion and motionless cases
are similar. Noticing this, we set Jt2h(m < afh(s) so that a
critical zone always exists as [crfh(m), ath(s)]. To avoid false
decision in the motion indication stage, those confused cases
fallen in the critical zone are doubly checked by both sub-
sequent modules. The thresholds can be determined by some
preliminary measurements. Different from previous works that
rely on scenario-tailored calibration, however, we do not need
to calibrate for each different case because the thresholds
can gracefully apply to various environments. Moreover, we
design a critical zone of the thresholds to tolerate a range of
potentially different values in diverse scenarios.

The design of the motion indicator is lightweight since the
calculation of envelope is fast and effective. The hypothesis
testing provides a primary indication of motion or motion-
less, but not the ultimate declaration with high confidence.
Actually, while the usage of CSI variations is sufficient for
motion indication, it is too optimistic to be an effective metric
for target detection since it is too sensitive to environment
dynamics. A more elaborative metric is proposed for moving
human detection in the following section.

C. Moving Target Detection

If a group of measurements is labelled with state .Sy, in the
previous stage, it is then passed through a more elaborate and
reliable examination, i.e., moving target detection.

Numerous research has explored to detect human move-
ments non-invasively for localization and tracking [1], [3],
counting [2], [26] or activity recognition [17]. However, most
utilize only the envelope features of received signals, either in
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Figure 3: Human movements induce
significantly larger changes in signal
envelope.

the form of value of MAC layer RSSI [1], [2] or amplitude of
PHY layer CSI [17], [26], yet ignore the counterpart phase in-
formation. In this work, we demonstrate that phase information
is similarly or even more sensitive to environmental changes
and thus provides more accurate detection of moving humans.
Hence we incorporate both amplitude and phase features to
unleash the full potential of CSI for more accurate and reliable
detection.

Due to the lack of time and frequency synchronization,
however, raw phase information extracted from commodity
WiFi devices tends to be extremely random [24], [26]. Denote
qgk = ¢ + 2mwip At + 27w Aw as the measured phase
at subcarrier k with carrier frequency wy, where ¢y is the
genuine phase. 2w At and 27wy, Aw are the unknown phase
shifts caused by the clock offset At and frequency difference
Aw.

To mitigate the random noise in raw phase measurements,
we employ a linear transformation as recommended in [24].
We revise the raw phase information as ¢; = ng —oawg — f
where o and [ are intuitively the slope and offset of phase
change over all the subcarriers, respectively. Then the sanitized
phase measurements are re-assembled with the corresponding
amplitudes into complex CSIs for mobile target detection.

Consider N CSIs within a time window 1', where each CSI
on subcarrier k sampled at time ¢;,4 € [1, N] is a complex
number as in Equation 1:

Hy (i) = || Hy(i)||e? ) 3)

where /Hj (i) denotes the revised phase ¢} (). Then CSI
samples at time t; over all the n subcarriers form a complex
vector

H{(i) = [H1(i), Ha(i), -+, Hn(3)]. @)

Since human motions induce temporal fluctuations of the
received signals, we investigate to depict such temporal dis-
turbance via correlations between successive measurements.
Concretely, for the N CSIs H = [H(i)]nxn, we calculate the
respective correlation matrices A and C' for amplitudes and
phases of the CSI measurements as follows:

A:[a(iaj)]NxN7CZ[C(ivj)}NxN7 (5)

where each element denotes the correlation coefficient between

Variances of envelope changes [dB]
Figure 4: Envelope variances of human

movements are remarkably larger than
those of no movements.
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Figure 5: Normalized maximum eigen-
values of amplitude and phase correla-
tion matrices

H(i) and H (j):

(6)
)

Afterwards, we derive the eigenvectors of matrices A and
C' and exert the normalized maximum eigenvalues (denoted
as A4 and A¢ for A and C respectively) for moving human
detection. Generally, in case of no human presence or merely
stationary human, successive measurements would exhibit
high correlation factor, resulting in large eigenvalues (close
to 1). In contrast, the eigenvalues tend to be small if there are
moving humans during the measurements. Figure 5 depicts an
illustration of 500 groups of measurements for each case, of
which each group involves 500 packets. As seen, both A4 and
Ac¢ are close to 1 in case of stationary human presence or no
human presence, while decrease dramatically in case of human
movements. Consequently, one can easily search for a cutting
edge (threshold) to identify measurements accompanied with
human movements. In addition, the threshold is scenario-
independent thanks to the use of eigenvalue-based features,
which are independent of absolute signal powers that vary over
different scenarios and different time. This threshold, together
with the ones for motion interference in Equation 2, are the
only components of DeMan that need slight prior efforts to
calibrate, except for which DeMan requires no calibration.

The use of eigenvalues of a correlation matrix is indepen-
dent of absolute signal powers. Therefore once the prerequisite
thresholds are determined, they are applicable to various
scenarios and do not need to be re-calibrated. This approach
is inspired by [25] that employs maximum and the second
maximum eigenvalues of amplitude, and we advance it by
harnessing both amplitude and phase features of CSI.

corr (|[H @], [[H()I),
corr (LH (i), LH(5)) .

a(i, j)
c(i,j) =

V. STATIONARY TARGET DETECTION

In contrast to motion detection, conventional solutions to
device-free detection for stationary humans often require a
prior profile measured with no human presence within the
monitored area [7]. This is because the presence of stationary
human normally incurs static signal strength changes by
shadowing the LOS path or creating a new reflection path
[8], but only slight fluctuation within a temporal window.
Hence prior awareness of the signal profiles without human
presence is indispensable as reference for individual cases. To
eliminate the overhead of such pre-calibration and achieve a
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Figure 6: Rhythmic motions of human breathing induce wave-like patterns on the received signals. Various colors in (a) and
(c) indicate different level of signal strengths, decreasing from red to blue.

unified detection framework for both moving and stationary
targets, the key observation is that stationary people continu-
ously breathe, which can be detected from wireless signals if
elaborate mechanisms are designed for subtle chest motions.

A. Periodic Alterations from Breathing

We begin with some intuitive observation and formal justi-
fication on why human breathing is measurable via CSI.

Analyzing human breathing. Traditional non-invasive
human detection schemes mostly detect whole-body human
motions [7], and assume that the signals remain nearly con-
stant in static environments. We demonstrate that, however,
the wireless signals are sensitive enough to be distracted by
breathing people who stands still on, close to, or distant to the
LOS path.

In typical indoor environments, wireless signals can prop-
agate via reflection, diffraction, scattering via human bodies
and other environmental obstacles. Therefore, signals can be
potentially modulated by periodic chest motions of breathing
if it interacts with the person, even when he stands still at the
same place.

As illustrated in Figure 2, when a person is present on
the LOS path, the movements of chest cavity would either
dictates the signal propagation by different extent of shad-
owing (Figure 2c), or continuously shifts the propagation path
between LOS and NLOS (Figure 2d). Several works [20], [21]
have observed similar phenomenon on RSSI as Figure 2d and
deploy dedicatedly placed TX and RX for breath monitoring.
Nevertheless, they are effective only when the conditions in
Figure 2d are strictly satisfied.

In presence of a breathing person off the LOS path, the re-
ceived signals can also be continuously disturbed by reflections
from the moving chest. As shown in Figure 2e, the presence
of a human body would create a new reflection path while the
person’s breathing can repeatedly change that path. Also, a
breathing person could refashion an already existing reflection
path, as illustrated in Figure 2f. Such changes in multipath
propagations, however, are scarcely possible to be captured
by the coarse-grained RSSI, yet observable through CSI,
which has been demonstrated to be capable of characterizing
multipath effects at OFDM subcarrier level [10].

Measuring human breathing. Although human breathing
does change signal propagation, are the alterations discernible
and measurable using commodity WiFi infrastructure? We give

r<—Actual breathing frequency

PSD [dB]
1
S

Subcarrier
Average
||

0.8 1

0.2 0.4 0.6
Frequency [Hz]

Figure 7: Power spectral density of the filtered signal

a positive answer to this critical question after conducting real
experimental measurements using commodity WiFi devices.

As a preliminary verification, we collect a group of mea-
surements by letting one volunteer stand still and breathe nat-
urally beside a commercial laptop that serves as the receiver.
The measurements last for 2 minutes and the original CSI
amplitudes are plotted in Figure 6a. The amplitude patterns
are different from those of completely human-free static en-
vironments. By employing a bandpass filter (details will be
discussed in the following section) on the original CSIs, we
can see more conspicuous periodically oscillatory patterns, as
shown in Figure 6¢. Similar periodicities arise over almost all
subcarriers, since breathing produce consistent interference on
all subcarriers. Thus viewing from individual subcarrier, one
can observe obvious wave-like patterns arising in the filtered
signals (Figure 6b).

To assuredly examine the existence of a signal component
that is caused by human breathing, we dive deeper into the
measured signals to see whether there is a signal that has
the same frequency as human breathing. Typically, an adult
breathes at about 14 breaths per minute (bpm) at rest while
a newborn at 36 bpm [30], [31]. Thus the general breathing
frequency of a static human is limited in 0.167Hz to 0.667Hz,
which corresponds to a breathing rate of 10 and 40 bpm,
respectively. Hence, we turn to investigating a potential signal
from the received signals with a similar frequency.

To this end, we analyze the power spectral density (PSD)
of the filtered signal in the frequency domain. As shown in
Figure 7, we can clearly see a significant component that
peaks at the frequency of 0.233Hz (about 14 bpm), which
corresponds to an adult’s typical breathing frequency (the true
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Figure 9: Human breathing introduces diverse signal responses over different frequency subcarriers. (a) All subcarriers but a
small portion (subcarrier #19~#24) depicts obvious breathing pattern, although the amplitude changes may be in the opposite
direction (subcarrier #1~#19 vs. subcarrier #25~#30). (b) Estimated signals are remarkably close to the breathing signals when
using subcarrier #10. (c) Incorrect frequency with meaningless amplitude may be resulted in if using subcarrier #24.

breathing rate of this measurement is exactly 14 bpm). As a
result, one can conclude the extracted signals as induced by
human breathing motion.

B. Breathing Detection

To estimate breathing signals, we first pass the original
measurements through a filter to remove noises while keep
the interested modes. Then we justify a sinusoidal model
of the breathing signals and detect human breathing using a
parameter estimation technique.

1) Signal Filter: Before estimating breathing signal from
the mixed received signals, we first filter out the irrelevant
components, such as electronic noise and other motions. We
achieve this by applying a bandpass filter.

Since human breathing rates roughly fall into the range
of 10bpm to 40bpm, the filter should retain signals within
frequencies of 0.167Hz and 0.667Hz, while significantly atten-
uate the others. To be conservative, we set the minimum fre-
quency as fin = 0.15Hz and the maximum f,,,, = 0.70Hz.
In addition, for a sequence of signals {Hy (i)}, the mean
values H}, (i.e., the DC component) may bury the breathing
component that usually only has low amplitudes of 1dB or
2dB. The bandpass filter also removes the DC component in
the original signals, i.e., H; = 0. The filtered signals then
potentially indicate the presence of human breathing.

2) Sinusoidal Model: Recall Figure 6b, breath-induced
signal presents a sinusoid-like pattern. Previous works that
monitor breaths with UWB or sensor networks also suppose
that breathing attaches an additional sinusoidal component

to the received signal [20], [21]. Intuitively, this is because
periodic chest motion produces sinusoidal time delays of the
signals reflected by chest [20]. For the sake of simplicity, we
still use Hy(7) to denote the amplitude of CSI on subcarrier
k measured at time t; in this section. In a static environment,
the amplitude of received signals can be expressed as

Hy (i) = Hy, + € (i), ¥

where Hj, is the mean amplitude of the received signal at
subcarrier k and €, (7) is an additive noise. When a breathing
person presents, an additional sinusoidal term G (4) is added:

Hip(i) = Hy+ Gr(i) + ex(i), )
Gr(i) = Apcos(2mft; + ¢p), (10)

where Ay, ¢k, and f are the amplitude, phase, and frequency
of the breathing induced periodic component in respective
order and ¢; is the time when the signal is sampled. For ease of
presentation, this term of Gy (i) is also referred to breathing-
induced additive signal, or more concisely, breathing signal.
Due to interference of human breathing, the sinusoidal term
G(i) is generally larger than the noise term. In some extreme
cases with considerable environment noise, the breathing sig-
nal, however, could be drowned and thus potentially more
difficult to be identified. In this paper, we basically consider
relatively stable environments, where the Gy, (i) is larger than
or at least comparable to the noise term.

Intuitively, if the received signal is mean removed, it is
possible to model the residual component with a sinusoidal
model. Further, human breathing can be detected by estimating
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specific parameters (i.e., Ag, ¢, and f) of the model. In other
words, given a deterministic model with unknown parameters,
the problem of breathing detection is turned into a parameter
estimation problem, which can then be solved by optimization
techniques.

3) Parameter Estimation: Specifically, the parameter esti-
mation tasks are two-fold: 1) detect whether there exists a
signal component that holds the interested frequency, and 2)
if yes, what is the specific frequency (and other parameters
like amplitude and period counts).

Given the filtered signals H, (7) sampled at time T;, 1 <4 <
n, of which the mean amplitude is supposed to be removed,
we aim to find a sinusoidal signal G, (i) = Ay, cos(2m ft;+ )
that minimizes the residual sum of squares (RSS)

N N
RSS = Z G (i) — H(i)||*

i=1

Y

We tackle the problem using sinusoidal parameter estima-
tion algorithms that deal with a single sinusoidal signal of
unknown frequency, phase, and amplitude. Particularly, we use
the Nelder-Mead method [32], which is a common non-linear
optimization technique for multidimensional unconstrained
minimization, i.e., minimizing an objective function with
multiple variables. Nelder-Mead algorithm is a simplex-based
direct search that is effective and computationally compact and
has been widely employed in parameter estimation and similar
statistical problems.

Figure 8 illustrates the preliminary effects of the sinusoidal
parameter estimation. As shown in Figure 8a, when the person
breathes evenly, a sinusoidal model can fit the breathing-
induced signals with precise frequency and amplitude. Fig-
ure 8b portrays the case of a person breathing with inconsistent
depths over time, which causes breathing signals with diverse
amplitudes. As is shown, the sinusoidal parameter estimation
method still works excellently in such cases. Specifically, the
frequency estimation remains accurate although the RSS of
amplitude appears larger. We also test the model estimation on
non-breathing signals, i.e., signals measured when there is no
human presence, and depict the results in Figure 8c. Compared
with previous two figures, the signals without breathing motion
interference appear to be more random, lacking periodical
patterns. When applying the parameter estimation algorithm,
besides that the estimated frequency is beyond the interested
band of [fin, fmaz], the deduced signals make little sense
since the amplitudes shrink to insignificance. Consequently,
the estimation on non-breathing signals yields meaningless
results, which are remarkably discriminative from those pro-
duced from breathing signals.

In a nutshell, we conclude that a sinusoidal model can fit the
breathing signals measured by CSI (in the form of individual
subcarrier) and the parameters can be precisely estimated by
the Nelder-Mead method. Thus one can successfully distin-
guish the presence and absence of a breathing person. In the
following, we will extend to the full frequency band, i.e.,
all available OFDM subcarriers, to make the detection more
accurate and robust.

Frequency [Hz]

Scenarios

Figure 10: Frequency estimation on a majority of subcarri-
ers presents accurate results while profaned estimations may
appear on a small portion of subcarriers. Nevertheless, these
biased estimations tend to be outliers (circled parts) and could
be sifted out by LMS estimator.

C. Embracing Frequency Diversity

Modern modulations such as OFDM transmit information
via multiple orthogonal subcarriers simultaneously to combat
frequency-selective fading [33], giving rise to frequency diver-
sity for adaptive wireless communications [9], [33] and fine-
grained indoor localization [24]. In this work, we also harness
frequency diversity for more robust breathing parameter esti-
mation.

Ideally, human breathing should attach an additive signal
with identical frequency (i.e., the breathing frequency) on each
subcarrier, which is expected to be irrelevant to the signal
propagations. In practice, however, identical breathing motion
causes different extents of signal perturbation on different
subcarriers due to frequency-selective fading. Specifically, the
same motion does not necessarily consistently increase or
decrease the received signal power due to constructive and
destructive phaser superposition [8]. Hence breathing signals
on some subcarriers would be more conspicuous and thus
easier to be captured while on others might be less obvious.
Thus, utilizing breathing interferences across multiple subcar-
riers would improve both detection precision and robustness.

Taking Figure 9 as an example, the rationale and necessity
lie in three folds:

1) Breathing signals are well captured on most subcarri-
ers, yet with different amplitude responses. Fusing pa-
rameters on individual subcarriers would prospectively
produce more accurate estimation.

2) Breathing motion may have no significant effects on a
specific subcarrier, thus leading to miss detection using
that subcarrier only. Such miss detection can be avoided
by incorporating results across multiple subcarriers.

3) In cases of human absence, there will be consistently no
significant periodic signals appearing on any subcarrier.

To take advantages of multiple subcarriers, we first repeat
the above sinusoidal parameter estimation for each individual
subcarrier. Then we obtain a group of breathing frequency
estimations fk, 1 < k < n, with the corresponding amplitude
estimations flk Ideally, all fk should be the same since human
breathing frequency is principally nondiscriminatory to all
subcarriers. However, as discussed above, due to frequency-
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selective fading, amplitude attenuation on each subcarrier
differs from each other, leading to inconsistent parameter es-
timation when fitting with a sinusoidal model. Hence we need
to obtain reliable parameters from these primary estimations.

Diving into the parameter estimation on multiple subcar-
riers, the majority of the frequency estimations are quite
accurate and stable, and incorrect estimations occasionally
appear, as demonstrated by Figure 10. Motivated by this obser-
vation, we propose to sift out the biased incorrect frequency
parameters by conducting a one-dimension least median of
squares (LMS) outlier detection [34]. Mathematlcally, let f be
the LMS estimate of f = [fx,k=1,--- ,n] and rj, = fr — f
be the residuals, we determine whether fk is an outlier or not
following a typical LMS regression as

sy 1 iffrg/o*] <=25
I(fs) = { 0 otherwise

0_* — ZZ:I qkrl%
ZZ:l qk

1 if |rg/s? <=2.5
0 otherwise

)
ﬁ)\/medkr%.

The involved constant values are widely recognized factors in
the literature [34].

After diagnosing the biased and incorrect frequency estima-
tions, we simply sift them out and then average the remained
ones as the ultimate estimation of breathing frequency:

FeI(fe)
Zkzl Z e

where I(f},) is the outlier indicator we derived above. If f
falls in a given frequency band of interests, [fimin, fmaz), then
a stationary human is detected; otherwise not.

Generally, LMS regression yields more reliable diagnosis
with more sample data. In practice, noticing that nowadays
WiFi devices are often equipped with multiple antennas, we
incorporate multiple antennas to improve the reliability of
frequency estimation. Specifically, we extend the sinusoidal
parameter estimation to the CSI measurements on multiple
antennas, each of which results in n frequency estimations.
Fusing all these estimations for the LMS regression, more
accurate and reliable results can be gained than using a single
antenna. Having said that, please note the proposed method
benefits from, but does not rely on, multiple antennas.

(12)

where

s = 1.4826% (1+

f=— (13)

VI. EXPERIMENTS AND EVALUATION

In this section, we first interpret the experiment methodol-
ogy, followed by detailed performance evaluation.

A. Implementation

1) Experimental Environments: We prototype DeMan with
commodity WiFi devices and evaluate its performance in a
typical office building including a classroom and a laboratory

4

8m

Case 5

12m X
* AP Location

O Receiver Location

Figure 11: Experimental areas

(Figure 11). We employ a commercial TP-LINK TL-WR741N
wireless router as the transmitter operating in IEEE 802.11n
AP mode at 2.4GHz. A LENOVO desktop running Ubuntu
10.04 is used as a receiver, which is equipped with off-the-
shelf Intel 5300 NIC and a modified firmware [35]. During
the measurements, the receiver pings packets from the router
and records the CSI from each packet.

2) Experimental Methodology: We collect data from three
categories: 1) Moving data: There are one or more humans
walking around in the monitoring area. 2) Breathing data:
There is one human standing or sitting in the area of interests,
breathing naturally. 3) Human-free data: There is no human
presence and thus the environment is relatively static.

To collect moving data, we let a volunteer walk randomly
with a nature speed of around 1m/s along a Hilbert-like
trajectory [36], which holds a space-filling property and thus
traverses the entire monitoring area. We adopt such trajectory
in purpose of demonstrating the sensitivity over the covered
space. Yet note that we did not necessarily follow a strict
Hilbert trajectory in the experiments. Instead, we let the vol-
unteer take a Hilbert-like but less complex path to traverse the
space. CSI data are continuously logged during the walking.
For breathing data, a volunteer stands or sits at a uniformed
grid of locations over the monitoring area, either on or off
the LOS path between the transmitter and receiver. For each
grid location, we collect a group of breathing data for around
2 minutes. For each link, the monitoring area is defined as a
rectangle area centered along the TX-RX path with a width of
2 meter and a length of the TX-RX distance. The volunteer
keeps natural breathing without other motions during the
measurement. The ground truth respirations are also manually
counted and recorded. For fair comparison, we collect a similar
amount of data for each category.

As shown in Figure 11, we consider 5 different scenarios
with different link conditions. Particularly, we consider both
LOS and NLOS propagation, diverse TX-RX distances ranging
from about 3 meters to 6 meters. For each scenario, we conduct
all the 3 types of measurements, each for three times. The
experiments are conducted in different days in a week, with
about 8 hours of data or 540k CSI records in total.

For moving target detection, we first employ the well-
known Support Vector Machine (SVM) classification to obtain
a threshold line, based on a portion of measurements. The
threshold line is one-time learned and, according to our
experiments, fits various scenarios. Yet different from previous
work that conduct scenario-tailored calibration, we do not need
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to calibrate the parameters for each different scenario over
different time.

3) Evaluation Metrics: We mainly use the following met-
rics to evaluate the performance of DeMan.

o True Positive Rate (TP): the fraction of cases where a
human (either moving or breathing) is correctly detected.

o True Negative Rate (TN): the ratio of cases where no
human presence is correctly identified.

For each metric, we separately examine the performance
of moving human detection and stationary human detection,
followed with the overall evaluation. We also inspect the
impacts of various factors, including packet quantity, link
distance, LOS and NLOS propagation, etc.

B. Performance

1) Performance of Detecting Moving Human: We first
examine and compare the performance of moving human
detection using moving data and human-free data. Figure 12
shows the performance of moving detection, especially the
gain from exploitation of full CSI information, i.e., amplitude
and phase. As is shown, DeMan achieves high TP and TN rates
of 94.07% and 98.55%, both outperforming the scheme with
merely CSI amplitude (by about 2% and 5% respectively).
To further demonstrate the benefits of using eigenvalues of
correlation matrices, we compare DeMan with a scheme that
uses variances of amplitude and phase. As shown in Figure 12,
the variance-based scheme attains poor performance with the
TP and TN rates of only 81.48% and 78.04% respectively.
We suspect that this is because variances, unlike eigenvalues,
are dependent on absolute signal powers and thus vary over
different scenarios even when the human motions are sim-
ilar, making a pre-calibrated threshold line inapplicable for
extended cases.

on detection accuracy of static target.

stationary target detection.

We inspect the impacts of packet quantity by applying a
sliding window varying from 50 packets to 1000 packets.
The results are illustrated in Figure 13, which demonstrates
that TP rate improves significantly with more packets (from
87.54% with 50 packets to around 95% with more than 500
packets) while TN rate is almost unaffected at around 98%.
The result is reasonable because in case of human-free, the
channel measurement mostly keeps stable and thus a short
period of samples is sufficient to capture the characteristics. In
contrast, insufficient samples fail to characterize the temporal
variations of human motions since the influences from human
movements do not uniformly distribute over time. Neverthe-
less, we observe that satisfied accuracy of both TP and TN
rates higher than 90% can be consistently achieved when using
more than 200 packets.

Figure 14 shows the moving human detection performance
under different sample rates. The results are drawn from data
measured within the same period of time window. As can be
seen, sample rate almost does not affect detection accuracy.
This indicates that human movements continuously affects the
channel, and either frequent or sparse sampling can capture
the variations well.

2) Performance of Detecting Static Human: Breathing data
together with human-free data are used for evaluation of
stationary human detection. Figure 15 demonstrates that De-
Man achieves good detection performance in various scenarios
as depicted in Figure 11, with TP and TN rates consistently
higher than 90%. Integrating results from different cases,
DeMan provides a TP detection rate of 94.64% with a TN
rate of 94.49%. Even in case 4 as shown in Figure 11 where
the TX-RX distance is more than 6 meters, the TP and TN
rates still keep at 92% and 93%, respectively. Since the data
are measured when the person stands or sits at different
locations with diverse TX-RX distances, we conclude that
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LOS and NLOS propagation

DeMan extends the breathing detection ability to cases of
various poses, presenting locations and longer link lengths,
compared with existing approaches [21], [22].

Figure 16 illustrates the performance of stationary target
detection with different amount of packets, given a fixed
sample rate of 5S0Hz. As seen, DeMan achieves high detection
accuracy, with TP and TN rates both higher than 95% with a
window of 1500 packets. The performance slightly degrades
with more packets, since human breathing might vary and
some motions could be involved during a long time window.
Detection performance also drops with too fewer packets.
Since human breathing motion is fairly slow, e.g., breathing
once within a period of a few seconds, observations within a
very short period make no sense of the breathing motion.

The performance under different sampling rate is portrayed
in Figure 17. Similar to moving human detection, sampling
rate has little impact on detection accuracy. Though a bit
counter-intuitive, we suspect this is because measurements
with sparse sampling still depict the rhythmic patterns of
breathing signals and thus the parameter estimation still works
well. In other words, as long as the signal’s periodicity is
fully reserved, regardless of the specific sample rate, the
performance of breathing detection can be maintained.

We are particularly interested in the performance of detec-
tion with stationary people presenting off the LOS path, i.e.,
on the reflected paths. Figure 18 depicts the detection rate of
people on and off the direct LOS path, with various packet
numbers. As seen, DeMan achieves great performance in both
conditions, with best TP and TN rates of above 95%. Such
encouraging results demonstrate the feasibility of DeMan in
various environments, without requiring users to stand directly
on or extremely close to the LOS path as demanded by
previous works [21], [22].

3) Putting it All Together: Finally, we examine the overall
performance of DeMan in practical system with all three cat-
egories of experimental data, integrating both moving human
detection and stationary human detection with the motion
indicator process. We use the packet amount of 1500 for
evaluation. We implement a baseline approach for comparative
study: a modified DeMan without the stationary target detec-
tion module, which can thus be treated as an improved version
of previous work [25] with phase information extension.

We first present the results of primary motion indicator
based on the variances of CSI as in Figure 19. As seen, most

Cases

Figure 20: The upper figure displays
accuracy of breathing rate estimation
for users on the LOS paths and the
lower for users on the reflected paths.

Table I: Overall performance

DeMan Baseline
Human Human Human Human
presence absence  presence absence
Moving 94.82% 5.18% 95.39% 4.61%
Breathing 93.33% 6.67% 35.71% 64.29%
Human-free 3.75% 96.25% 4.57% 95.43%

of human-free cases are accurately categorized as static and
only a very small portion of 1.39% is labelled as in motion.
In case of breathing human or moving human, however, a
significant portion of around 35% will be falsely classified in
the motion indicator stage. Nevertheless, most of the falsely
labelled cases (25.32% out of 34.27% and 31.48% out of
34.81% for breathing case and moving case respectively) will
be doubly checked by both moving and stationary detection.

Table I illustrates the overall detection results of DeMan.
Both moving people and stationary people can be accurately
detected, with respective detection rate of 94.82% and 93.33%.
Integrating the results together, DeMan achieves TP and TN
rates of 94.08% and 96.25%, respectively. As comparison,
the TP detection rate degrades to 65.55% for the baseline
approach, which does not differentiate moving and stationary
people and thus mixes up a significant portion (64.29%) of
stationary cases with human-free scenarios. Although the base-
line approach attains comparable TN rate, the corresponding
false negative rate increases to a considerable level of 34.45%.
These results demonstrate that DeMan improves detection
accuracy and extends detection ability by exposing human
breathing as indicators for stationary humans. Note that the
detection rate of human-free scenarios is less than 99.86% as
in Figure 19 because that a small portion of human-free cases
classified as static could be falsely alarmed in the stationary
target detection module, which, however, is negligible.

VII. DISCUSSIONS AND FUTURE WORKS
A. Monitoring Breathing Rate

Given that DeMan accurately detects stationary people
by sensing the breathing motion, we are also interested of
how accurately DeMan could estimate the breathing rate.
As shown in Figure 20, we test 35 groups of 1 minute
measurements and observe that DeMan yields breathing rate
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of errors less than 1 bpm for most testing cases. Concretely,
the average estimation error is 0.86 bpm for LOS scenarios
and 0.97 bpm for NLOS scenarios. These results demonstrate
that DeMan achieves comparable accuracy of breathing rate
estimation with previous contactless approaches and works
effectively even when the person presents on the reflected
paths. In this sense, breathing rate monitoring is a side product
of DeMan, which even outperforms previous dedicated works
in case of longer link lengths and diverse user poses and
presence locations [20]-[22]. Nevertheless, currently we do
not consider people diversity in our experiments, and it is of
our interests to study how a person’s age, gender, size, etc.
affect breathing detection and estimation.

B. Expanding Detection Coverage via Space Diversity

Emerging generations of WiFi infrastructure are incorporat-
ing an increasing number of antennas to boost capacity lever-
aging space diversity [28]. Multiple antennas can be controlled
digitally to adjust their beams towards a certain direction using
beamforming techniques [37]. Such capability of narrowly
focusing transmission power on an intended direction can
avoid the adverse impact of irrelevant multipath, and offer
higher sensitivity on the blockage and reflection induced by
the target micro motions (breathing in our case) even from a
NLOS path [5]. In addition, since signals propagating through
a NLOS path often arrive at the receiver with a different
angle-of-arrival, it is possible to intentionally magnify the
received signals from directions of the NLOS paths to allow
wider detection range, and researchers have demonstrated the
feasibility to distinguish arriving angles from multiple paths
using commodity software radios [38] and standard WiFi
infrastructure [39].

C. Multiple Target Detection

Current DeMan excels in detecting stationary humans in
case of individual person presence. In the future, we intend to
expand DeMan to multiple people scenarios. When there are
multiple stationary persons in the monitoring area, each person
is expected to contribute an additive signal with individual
breathing frequency. Hence the resulted breathing signal will
be a superposition of multiple sinusoidal signals. To extract
the breathing frequencies, we may then apply either a multiple
sinusoidal parameter estimation algorithm or successive inter-
ference cancellation techniques [40]. Furthermore, we envision
the impacts of chest motion on the phase information of CSI as
a potential proxy for more complicated cases where multiple
persons could hold nearly identical breathing rates.

D. Extending to Through-wall Detection

The applicability of DeMan in case of human presence on
the reflected paths encourages us to extend the detection ability
to NLOS scenarios, i.e., the LOS propagation is prohibited
between the TX and RX. Specifically, we are interested in
exploring the possibility of through-wall detection of human
presence, yet without involving a dense network or prior link
calibration as [1], [7]. The potentiality of detecting people in

case of NLOS propagation is critical and helpful for various
applications like disaster relief where survivors are often
trapped behind the wall or buried underground.

VIII. CONCLUSIONS

In this work, we present the design and implementation
of DeMan, a unified framework for simultaneous detection
of moving and stationary people with COTS WiFi devices.
We exploit both amplitude and phase information of CSI
for moving target detection. To detect stationary people, we
leverage the breathing-induced periodic patterns on wire-
less signals using a sinusoidal model. To improve detection
accuracy and robustness, we further harness the frequency
diversity across multiple OFDM subcarriers. We prototype
DeMan in typical buildings. Experimental results demonstrate
that DeMan achieves great performance for both moving and
stationary people detection in various environments. Requiring
no prerequisite scenario-tailored link calibration and being
effective for persons on and off the LOS paths, DeMan sheds
lights on practical non-invasive detection techniques.
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