

Passive Detection of Moving Targets with Dynamic Speed using PHY Layer Information

Kun Qian, Chenshu Wu, Zheng Yang, Yunhao Liu, Zimu Zhou

School of Software and TNList, Tsinghua University The Hong Kong University of Science and Technology

Outline

- Introduction
- System Design
- Performance Evaluation
- Ongoing Work
- Conclusion

Call of Device-free Detection!

Intrusion Detection Patience Monitoring Search & Rescue

Limitations on current detection tech.

High Cost.

- Dedicated devices
- Small-scale deployment

Environment Constraints.

- Line-of-sight
- Enough light

Privacy Concerns.

- Personal privacy
- Sensitive Information

Wi-Fi, An alternative approach

* 3 9 9 9 9 9 1

Low Cost.

- COTS devices
- Large-scale deployment

Less Constraints.

- Non-Line-of-sight
- Work without light

Less Concerns.

- Less information
- No multimedia data

Still sensitive to motions.

Detection towards Wi-Fi : RSSI

Principle

• Signal Strength varies significantly with environment changes.

Drawbacks

- High Variability
- High susceptibility to noise

Youssef et. al. RASID [PerCom '12]

Detection towards Wi-Fi : CSI

Principle

- RF Signal is composed of several individual subcarriers.
- Each subcarrier varies with environment changes.
- CSI is the combination of phases and amplitudes of all subcarriers. $H = [H(f_1), H(f_2), ..., H(f_N)]$ $H(f_k) = \|H(f_k)\|_{\mathcal{C}^{H(f_k)}}$

Drawbacks

• Only amplitude information is used.

Xiao et. al. FIMD [ICPADS '12]

Challenges against fully using CSI

Noise and Interference distort measurements

CSI phase is unusable

Identify motion event using feature properly

Slow motions may be missed due to low sensitivity...

Contribution to Extending Detection Range

Outline

- Introduction
- System Design
- Performance Evaluation
- Ongoing Work
- Conclusion

Architecture overview of PADS

Architecture overview of PADS

Phase Sanitization

Unsynchronized Tx/Rx Pair leads to polluted CSI phase.

Phase relation for *i*th subcarrier

Raw phase distribution of *i*th subcarrier

Using linear transformation

 $2\pi \frac{\kappa_i}{N} \delta + \beta + Z$ can be sanifized by linear transformation **Raw Phase** $a = \frac{\hat{\phi}_n - \hat{\phi}_1}{k_n - k_1} = \frac{\phi_n - \phi_1}{k_n - k_1} - \frac{2\pi}{N}\delta$ $b = \frac{1}{n} \sum_{j=1}^{n} \hat{\phi}_{j} = \frac{1}{n} \sum_{j=1}^{n} \phi_{j} - \frac{2\pi\delta}{nN} \sum_{i=1}^{n} k_{i} + \beta \frac{g}{S} \left| \frac{g}{N} \right|$ $\tilde{\phi}_i = \hat{\phi}_i - ak_i - b$ **Subcarrier Index Sanitized Phase**

Sanitization Result

Outlier Filtering

Subcarrier Index

Using Hampel Identifier

Architecture overview of PADS

Feature Extraction

Principle

• Variance reflect changes.

Drawbacks

- Absolute signal power
- Random noise

Amplitude

Eliminating Absolute Signal Power

CSI with sanitized phase

Mitigating Random Noise

Extracting Feature

Architecture overview of PADS

Multi-Antenna Fusion

Median indicators keep relatively stable

Motion Inference

SVM Classification Algorithm

- Small training set : about 5 min
- Real time
- Effective and efficient

To get better inference result

Extending Feature set

- 2nd Max Eigen of Amplitude
- 2nd Max Eigen of Phase

Outline

- Introduction
- System Design
- Performance Evaluation
- Ongoing Work
- Conclusion

Experiment Setup : COTS Devices

Rx: Mini PC equipped with Intel 5300 NIC

Tx: 802.11n AP

Parameter settings

- Collect data from different scenarios.
- Testers walk with different speed.
- Data of static environment is collected for training and testing.
- AP is placed at various height from 1.2m to 2m
- COTS pairs are placed at various distances from 2m to 7m
- Both LOS and NLOS conditions are involved.

Scenario of corridor

Demo

Overall Performance

Impacts of sliding window size

Impacts of number of features

Impacts of Number of Antennas

Probability of using "bad" antenna is reduced.

Impacts of Dynamic Speed

Measurement Cases

The performance of PADS remains almost unchanged.

Outline

- Introduction
- System Design
- Performance Evaluation
- Ongoing Work
- Conclusion

Static Human Detection

Outline

- Introduction
- System Design
- Performance Evaluation
- Ongoing Work
- Conclusion

Conclusion

- We propose a design for passive human detection leveraging full information of CSI.
- We propose a novel unified feature using the eigenvalue of covariance matrix of normalized CSI.
- We explore space diversity provided by multi-antennas.
- Experiment results demonstrate that PADS can achieve high performance that outperforms traditional RSS-based and CSI-based systems.

Looking forward to your comments!

Thanks & Questions?

qiank10@gmail.com School of Software, Tsinghua University