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Abstract—Device-free passive detection is an emerging tech-
nology to detect whether there exists any moving entities in the
area of interests without attaching any device to them. It is an
essential primitive for a broad range of applications including
intrusion detection for safety precautions, patient monitoring
in hospitals, child and elder care at home, etc. Despite of the
prevalent signal feature Received Signal Strength (RSS), most
robust and reliable solutions resort to finer-grained channel
descriptor at physical layer, e.g., the Channel State Information
(CSI) in the 802.11n standard. Among a large body of emerging
techniques, however, few of them have explored full potentials of
CSI for human detection. Moreover, space diversity supported
by nowadays popular multi-antenna systems are not investigated
to the comparable extent as frequency diversity. In this paper,
we propose a novel scheme for device-free PAssive Detection of
moving humans with dynamic Speed (PADS). Both amplitude
and phase information of CSI are extracted and shaped into
sensitive metrics for target detection; and CSI across multi-
antennas in MIMO systems are further exploited to improve
the detection accuracy and robustness. We prototype PADS on
commercial WiFi devices and experiment results in different
scenarios demonstrate that PADS achieves great performance
improvement in spite of dynamic human movements.

I. INTRODUCTION

Device-free passive detection is an emerging technology to
detect whether there exists any (moving) entities in the area of
interests without attaching any device to them [1], [2]. It is an
essential primitive for various applications including intrusion
detection for safety precautions, patient monitoring in hospit-
als, child and elder care in home, detection of living people in
a fire or earthquake, and battlefield military applications, etc.
In such applications, users should not be expected to carry any
purposed devices for localization or detection. Consequently,
traditional device-based techniques that require specialized
hardware attached to people are no longer applicable [3]–
[5]. Device-free detection has thus drawn increasing attention
recently to enable motion detection and target localization in
ubiquitous wireless environments [6]–[9].

With the widespread development and deployment of wire-
less networks, it is possible to realize passive detection of
moving targets by capturing the wireless context changes
caused by intruders. Various moralities of radio signals have
been explored to enable device-free passive detection, among
which RSS is one of the most popular ones due to its handy
accessibility on existing wireless infrastructure [10], [11].
RSS-based device-free detection schemes exploit variations in
RSS measurements to infer anomalous environment changes.

Despite of extensive research conducted and great progress
achieved, RSS-based scheme still suffers from its coarse
granularity and high susceptibility to background noise. As
a result, false detection can happen frequently since RSS
changes caused by especially slow and slight target movements
would be buried by its intrinsic variances.

More robust and reliable solutions resort to finer-grained
channel descriptor at physical layer that is more sensitive to
human presence while keeps rather stable in static environ-
ments. Channel State Information (CSI), which is now tract-
able on commodity NICs , presents subcarrier-level channel
measurements in the framework of modern OFDM technique.
With dominant advantages to RSS, CSI-based device-free
detection and localization have recently attracted growing in-
terests [12]–[14]. Among a large body of emerging techniques,
however, few of them have explored full potentials of CSI for
human detection. Specifically, most of previous works stop
by amplitude of CFR yet ignore the as well sensitive phase
information (mainly because the raw phases are meaningless).
Moreover, space diversity supported by nowadays popular
multi-antenna systems are not investigated to the comparable
extent as frequency diversity. Finally, most previous works
do not consider human behavior diversity, especially dynamic
walking speed, and thus might fail for extremely slow moving
targets.

In this paper, we propose a novel scheme for device-
free PAssive Detection of moving humans with dynamic
Speed (PADS). Exploiting full information (both amplitude
and phase) provided by CSI, our approach is able to accurately
detect human movements of dynamic speed. To achieve this,
we firstly derive meaningful phase information by employing
a linear transformation on the raw CSI to eliminate the
significant random noise. Then an outlier filtering is applied
to sift out biased observations. Afterwards, a novel unified
feature, i.e., maximum eigenvalue of covariance matrix, is
extracted from normalized amplitude and phase information
respectively. The feature is designed to be power-irrelevant yet
variation-dependent and thus is generally extensible to various
scenarios without specific environment calibration. Next, we
introduce the Support Vector Machine (SVM) algorithm to
seek for a cutting line of the feature values for different
states (moving human presence and absence) for estimation.
Finally, CSIs across multi-antennas in MIMO systems are
exploited and integrated to improve the detection accuracy and



robustness.
To validate our design, we prototype PADS on commercial

off-the-shelf (COTS) WiFi devices (ordinary wireless routers
and laptops). Experiment results in different scenarios in-
cluding laboratory, offices and classrooms demonstrate that
PADS achieves great performance in spite of dynamic human
movements (various walking speed). Concretely, PADS accur-
ately alarms human movements by 97% in average with false
negative rate of 2%. Moreover, PADS achieve consistently
great performance in cases of walking human with dynamic
speeds, which outperforms existing approaches.

In summary, our main contributions are as follows:
• We propose a design for passive human detection lever-

aging full information of CSI. To the best of our know-
ledge, we are the first to incorporate meaningful phase
information for device-free human detection by success-
fully removing the randomness involved in raw phase.

• We propose a novel unified feature using the eigenvalue
of covariance matrix of normalized CSI. The feature
holds excellent properties for device-free detection due to
its universal applicability for both amplitude and phase
and irrelevance to specific power parameters that vary
over different links and over time.

• We explore space diversity provided by multi-antennas
supported by modern MIMO communicating systems to
enable more accurate and robust detection.

• We present the design and implementation of PADS in
commodity WiFi devices. Benefit from full advantages
of CSI, especially the sensitive phase feature, PADS
is capable of detecting walking humans with dynamic
speeds. Experiment results demonstrate that PADS can
achieve high performance that outperforms traditional
RSS-based and CSI-based systems.

The rest of the paper is organized as follows. In Section II,
we present a brief review of recent innovations on device-
free human detection. Section III gives an overview of the
system architecture while the detailed design is presented in
the subsequent Section IV. In Section V, we introduce the
experiment settings and results. Finally, we conclude the work
in Section VI.

II. RELATED WORKS

Device-free passive detection or localization have drawn
much attention in the past years [1]. In this section, we briefly
review the most related works on passive motion detection in
pervasive wireless environments, which can be classified into
two categories: RSS-based and CSI-based.

RSS-based detection. RSS is especially attractive for
device-free detection since RSS measurements are easily ac-
cessible in existing wireless networks with commodity devices.
Existing RSS-based passive detection or localization mainly
rely on RSS changes due to target presence and movements.
More specifically, a large value of RSS variance generally
indicates a moving target in the monitoring area while a

Target Detection

Feature ExtractionData Preprocessing

Outlier 
Filtering

Channel State 
Information

Phase 
Sanitization

Amplitude 
Feature

Motion 
Inference

Multi-Antenna 
Fusion

Phase 
Feature

Detection Alarm
Presence
Absence

Figure 1. Architecture overview of PADS

small value infers none [15]. The most well-known RSS-based
device-free localization should be the Radio Tomographic
Imaging (RTI) [10], which deploys a sensor network around
the target area and uses the RSS changes to localize and track a
person. Several varieties of RTI technique have been proposed,
including the vRTI [16], mRTI [10], etc. Another system,
RASID [11], improves the detection accuracy by analyzing
the RSS features and adopting a non-parametric technique
for adapting to environment changes. A more recent work
[17] experimentally shows that the localization performance
degrades significantly when people are moving in dynamic
speeds and thus proposes a scheme that adaptively adjusts the
sample window size to facilitate localization accuracy based on
the estimated speed. Benefiting from full advantages of CSI,
especially the sensitive phase feature, our proposed system
is also capable of detecting walking humans with dynamic
speeds, yet without the complex speed estimation.

CSI-based detection. CSI-based scheme attracts more at-
tention in recent years since CSI can be exported from
commodity wireless NICs [18]. Similar to RSS-based scheme,
most CSI-based detection approaches also leverage variations
in CSI measurement to infer target locations or presences.
Pilot [19] is an early attempt in device-free positioning,
which leverages the correlation of CSI over time to monitor
abnormal appearance and further locate the entity. Omni-
PHD [13] studies the omnidirectional sensing coverage for
passive human detection, using multipath effects captured by
CSI. FIMD [12] enables accurate fine-grained burst motion
detection by exploiting the temporal stability of CSI in static
environments. FCC [14] studies the relationship between the
number of moving people and the variation of CSI and
thus achieves device-free crowd counting. Despite that many
works have investigated CSI for device-free detection, most
of previous approaches merely leverage the amplitude of CSI
information and leave phase information unexplored. In this
paper, we firstly explore and incorporate phase with amplitude
for device-free human detection.

III. OVERVIEW

As shown in Figure 1, we utilize the physical layer channel
state information (CSI) as a primary indicator for human mo-
tion. CSI depicts the temporal and spectral structure properties
of a wireless link when an RF signal propagates along multiple
paths. The rationale for device-free human detection is that a
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Figure 2. Phase before and after linear transformation
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Figure 3. Outlier detection for CSI observations

fraction of propagation paths would be affected due to intruder
presence. Specifically, for moving targets, this contributes to
the dramatic changes in CSI over time, which can then be
captured by the temporal variations of CSIs. CSIs can be
measured and collected from commodity WiFi devices using
off-the-shelf network interface cards (NIC) such as Intel 5300
[18]. In modern multiple subcarrier radio like OFDM, CSI
is usually portrayed in the frequency domain by the form of
Channel Frequency Response (CFR).

To enable a fast and efficient detection system, three main
components are incorporated in PADS, i.e., data preprocessing,
feature extraction, and target detection. Firstly, CSIs are expor-
ted from off-the-shelf NIC that communicates with an ordinary
wireless router. Raw CSI measurements could contain signi-
ficant phase random noise, which are supposed to be removed
by the phase sanitization module. After that, an outlier filter
is applied to eliminate occasional outlier observations in CSI
sequence.

Feature extraction acts as the most critical part for accurate
and efficient human detection. In PADS, we propose to exploit
amplitude and phase information of CFR simultaneously. To
avoid the influence of diverse transmitting power in specific
scenarios, we devise a novel feature using the respective
three maximum eigenvalues of the covariance matrices of a
normalized version of amplitude and phase information over
a certain time window.

The features are then fed to an inference model to alarm
user movements. Instead of using a clustering algorithm, we
adopt a threshold-like detection scheme. A cut-off line is pre-
calibrated by employing a classical classification algorithm,
i.e., Support Vector Machine (SVM), on certain amount of
preliminary measurements. Movement inference is then done
by comparing the amplitude and phase feature to the pre-
calibrated values. The approach advantages in zero data con-
straints (the clustering-based method would require each group
of data to contain measurements corresponding to at least
two different states [12]). Finally, to enhance the detection
accuracy and robustness, multiple antennas in modern MIMO
systems are also explored and integrated.

IV. METHODOLOGY

In this section, we details the design of PADS by real
measurements.

A. Data preprocessing

Leveraging the off-the-shelf NIC with slight driver modific-
ation, a group of CFRs on N = 30 subcarriers can be exported
to uplayer users for every one packet in the format of CSI:

H = [H(f1), H(f2), · · · , H(fN )] (1)

Each CSI represents the amplitude and phase of an OFDM
subcarrier:

H(fk) = ‖H(fk)‖ej∠H(fk) (2)

where H(fk) is the CSI at the subcarrier k(k ∈ [1, 30])
with central frequency of fk, and ∠H(fk) denotes its phase
(for convenience, we also use φk to denote the phase in
the following). To monitoring an area of interests, CSIs are
continuously collected and K measurements within a specific
time window form the CSI sequence which can be denoted as

H = [H1, H2, · · · , HK ] (3)

The K measurements of CFR then serve as the basic input for
our movement detection algorithm, which will be first passed
through a phase sanitization and an outlier filtering process.

1) Phase sanitization: Although CSI has been widely ex-
plored for various applications, most of them only considers
amplitudes of either CFR or CIR and thus the counterpart of
CSI, i.e., phase information does not attract enough attentions.
One of the most important reasons lies in the unavailability of
phase information on commodity devices [4], [19]. As shown
in Figure 2, due to random noise and unsynchronized time
clock between transmitter and receiver, raw phase information
behaves extremely random over the all feasible field, making
it inapplicable for any detection.

In this paper, we seek to derive and incorporate usable phase
information to enable motion detection of dynamic target
speeds. Our key observation is that significant component of
random phase offsets can be removed by employing a linear
transformation on the raw phase readings.
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Figure 4. Variances of both amplitude and phase increase significantly
due to human movements.

0 5 10 15 20 25 30
−2

−1

0

1

2

Subcarrier

Am
pl
itu
de

0 5 10 15 20 25 30
−2

−1

0

1

2

Subcarrier

Am
pl
itu
de

Figure 5. Variances of both amplitude and phase increase significantly
due to human movements.

Specifically, the measured phase φ̂i for the ith subcarrier
can be expressed as:

φ̂i = φi − 2π
ki
N
δ + β + Z, (4)

where φi denotes the true phase, δ is the timing offset
at the receiver, which causes phase error expressed as the
middle term, β is an unknown phase offset, and Z is some
measurement noise. ki denotes the subcarrier index (ranging
from -28 to 28 in IEEE 802.11n) of the ith subcarrier and N
is the FFT size (which equals to 64 in IEEE 802.11 a/g/n).
Due to the unknowns listed above, it is infeasible to obtain
the true phase shifts with solely commodity WiFi NICs.

To mitigate the impact of random noises, we perform a
linear transformation on the raw phases, as recommended in
[4]. The key idea is to eliminate δ and β by considering phase
across the entire frequency band. Firstly, we define two terms
a and b as follows:

a =
φ̂n − φ̂1
kn − k1

=
φn − φ1
kn − k1

− 2π

N
δ (5)

b =
1

n

n∑
j=1

φ̂j =
1

n

n∑
j=1

φj −
2πδ

nN

n∑
j=1

kj + β (6)

If the subcarrier frequency is symmetric, which indicates∑n
j=1 kj = 0, b can be expressed as b = 1

n

∑n
j=1 φj + β.

Subtracting the linear term aki + b from the raw phase φ̂i, we
obtain a linear combination of true phases, denoted as φ̃i, from
which the random phase offsets have been removed (omitting
the small measurement noise Z):

φ̃i = φ̂i − aki − b = φi −
φn − φ1
kn − k1

ki −
1

n

n∑
j=1

φj (7)

Figure 2 illustrates an example of the phase after transform-
ation, which distributes relatively stable as expected compared
to the original random version. Although we could not claim
the sanitized information is just the true phase, we do derive a
usable and effective feature of the true phase. For clarity, we
directly use φ instead of ˜phi to refer to the transformed phase
hereafter.

2) Outlier filter: Outliers might appear in CSI measure-
ments due to protocol specifications as well as environmental
noises. As motion detection techniques mostly adopt variation
based detection whatever algorithms are used, such outliers
could affect the movement detection performance a lot and
thus should be sifted out before detecting motion. To identify
and remove these biased measurements, we adopt a Hampel
identifier [20], which declares any point falling out of the
closed interval [µ − γσ, µ + γσ] as an outlier, where µ
and σ are the median and the median absolute deviation
(MAD) of the data sequence, respectively. γ is an application
dependent parameter and the most widely used value is 3.
Figure 3 illustrates the frequent outlier observations that might
be contained in raw measurements and the results of outlier
filtering (using window size of 100 and γ of 3).

B. Feature Extraction

An appropriate feature plays a critical role in device-free
detection and feature extraction serves as the most important
component of PADS. Various statistical feature has been
exploited for detection,such as variance [16], mean [10], distri-
bution distance [13], [21], etc. Different from previous works
that mostly utilize single feature from amplitude information,
we seek for both amplitude-based and phase-based features
and use them simultaneously for motion detection.

Although accounting for both amplitude and phase, we
strive to search for unified feature metrics that are suitable
for both sides. Apparently, the feature metric should be
absolute power irrelevant and possibly variance dependent,
since transmitting power parameters would be adapted over
different scenarios and thus are scenario dependent while
human movements contribute to disturbances of amplitude as
well as phase. As illustrates in Figure 4 and Figure 5, one can
see variances of both amplitude and phase in case of human
movements are significantly larger than those in static cases.
Figure 6 further illustrates the variances over each individual
subcarrier in case of moving human presence and absence.

Motivated by these observations, we suspect that variances
of amplitude and phase would be a couple of good indicators



Figure 6. Variances of both amplitude and phase increase significantly due
to human movements. (a) Subcarrier 10 of static case; (b) Subcarrier 10 of
dynamic case; (c) Subcarrier 20 of static case; (d) Subcarrier 20 of dynamic
case.

for abnormal appearance of moving people. Unfortunately,
variance could not directly be used as distinctive feature for
human detection because it is related to absolute signal power
and thus does not scale to diverse scenarios with various
link states. As a consequence, we propose to extract feature
from the respective covariance matrix of normalized CFR
amplitude and phase of n sequential measurements over a
certain time window. Denote ¯‖H‖ and Φ̄ as the normalized
CFR amplitude and phase sequence, then their corresponding
covariance matrix is respectively

Σ( ¯‖H‖) = [cov(H̄i, H̄j)]K×K , (8)

Σ(Φ̄) = [cov(φ̄i, φ̄j)]K×K , (9)

where cov(Xi, Xj) denotes the covariance between vectors Xi

and Xj and X̄ indicates the normalized version of variable
X . For both matrices, with lower covariance values the link
is more likely to be static and free of intrusion. In contrast,
higher covariances would probably indicate presence of mov-
ing humans who disturb the link.

To extract a simple feature for further detection, we compute
the eigenvalues of both matrices and select the maximum
eigenvalue of each matrix, which finally forms a two-tuples
F = [α, ρ]:

α = max(eigen(Σ( ¯‖H‖))), ρ = max(eigen(Σ(Φ̄))). (10)

In practice, to guarantee the accuracy and robustness of
detection, we further introduce the second maximum eigen-
value of amplitude and phase respectively and thus devise
a four-tuple feature as F = [α1, α2, ρ1, ρ2], where α1, α2

and ρ1, ρ2 represent the respective maximum and second
maximum eigenvalue for amplitude and phase. In SectionV,
we will experimentally validate that more eigenvalues would
result in better performance while two is sufficient for achiev-
ing satisfied accuracy.
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Figure 7. Preliminary classification result using SVM

C. Motion Detection

Aiming at achieving calibration free detection, there are
generally two categories of methods can be adopted: clustering
based and threshold based. The former automatically clusters
measurement data into several clusters and then distinguish
different clusters as different states (presence or absence of
human) by comparing the center distance of each cluster. The
latter seeks for a general threshold from partial pre-collected
data and conducts state identification based on the threshold
value. Although the clustering approach avoids both environ-
ment calibration and threshold training efforts, it implicitly
assumes that at least two states are involved in each group
of measurements(otherwise one cluster or several clusters
corresponding to a same state are resulted, leading to miss or
false detection), which is impractical for most applications. As
a consequence, we adopt the threshold based scheme assisted
by SVM classification.

We first conduct an SVM based classification on preliminary
measurements collected from several scenarios. The above-
mentioned feature factors α and ρ are used as the input feature
of the SVM. As shown in figure Figure 7, we are delighted to
see that a clear gap can be found between the data correspond
to presence and absence of moving human. Moreover, although
people with different moving speeds exhibit various values
on each metric (since they induce diverse alterations on the
signal propagation paths), the self-similarity within individual
state is always remarkably smaller than cross-similarity of
data correspond to different states. This lays the fundamental
underpinnings of detection of people with dynamic moving
speeds. The rationale is that even slight motion can caused
perceivable changes in CSI, which enables its detection.

A pre-calibrated empirical cutting line is on this basis
determined and then used to further moving human detection.
The pre-calibrated cutting line, according to our measure-
ments, would fit various scenarios including different propaga-
tion distances, channel attenuation, different target behaviors,
etc. One key reason is that all the features involved is power
independent but only relates to the extent of temporal changes.



0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5 6 7 8 9 10
Measurement Group

M
ax

 E
ig

en
va

lu
e

 

 
Antenna 1
Antenna 2
Antenna 3

Figure 8. Antenna diversity of amplitude feature

1.48

1.5

1.52

1.54

1.56

1.58

1.6

1 2 3 4 5 6 7 8 9 10
Measurement Group

M
ax

 E
ig

en
va

lu
e

 

 
Antenna 1
Antenna 2
Antenna 3

Figure 9. Antenna diversity of phase feature

Figure 10. Receiver Figure 11. Sample 1: Corridor Figure 12. Sample 2: Lab

D. Enhancement via Multiple Antennas

Noticing that multiple antennas are available in the more and
more popular MIMO communicating systems, we also exploit
multiple antennas to improve the precision and robustness of
human detection.

As shown in Figure 8 and Figure 9, the selected features
of amplitude and phase do vary over different antennas. If
mistakenly using a “bad” antenna, significant false alarm might
occur. Fortunately, we observe that the median value of all
antennas keep relatively stable across different scenarios. As
a result, for multi-antenna systems, we choose the median
indicator for detection, which is demonstrated to be simple
and effective by real experiments.

V. EXPERIMENTS AND EVALUATION

A. Experimental Setup

To evaluate the performance of PADS, we conduct real ex-
periments on commodity readily COTS devices. Specifically,
we use a single antenna TP-link wireless router as transmitter
and a mini PC with three antennas as receiver, which is
shown in Figure 10. We collect data from different scenarios:
classrooms, offices, corridors, etc. Figure 11 and Figure 12
show two samples of these scenarios. In each case, we let
a volunteer walk through the monitoring area with different
speeds along a trajectory that traverses the space uniformly.
We also collect data when there is no human presence or there

are only stationary persons. In total, we collect mobile and
static traces for more than one hour, respectively.

In different scenarios, the AP is placed at various height
from 1.2m to 2m. Diverse TX-RX distances from 2m to 7m
are also considered. In addition, LOS and NLOS conditions
(when the AP is blocked by the wall) are also both involved.

B. Performance Evaluation

1) Evaluation Metric: We use following two metrics to
evaluate the performance of our proposed PADS system, as
well as present FIMD system and RSSI-based system, in
respective environment.

• True Negative (TN) Rate: TN rate is the probability that
the static environment is correctly classified.

• True Positive (TP) Rate: TP rate is the probability that
the human motion events is correctly detected.

2) Overall Performance: First we depict TN rates of sys-
tems working in static environments. Figure 13 presents results
of five different test cases measured at different time or places.
All methods achieve excellent performance of TN rates higher
than 98% in most cases. However, we argue that though RSSI-
based aproach reaches equally high performance comparing
with PADS and FIMD in most cases, it suffers from temporal
variance and thus its performance is unstable (as indicated by
the performance drop in case 5).

Furthermore, we present TP rates of systems when human
motions present in the monitoring areas. Figure 14 shows
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Figure 13. TN rate of static cases
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Figure 14. TP rate of cases with human motion
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Figure 15. Relationship of detection rate and sliding window size
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Figure 16. Relationship of detection rate and number of features

results of five different cases measured at the same places
as static cases. As can be seen, PADS and FIMD systems can
detect human motions more precisely than RSSI-base system.
More importantly, PADS slightly outperforms FIMD system,
which validate the effectiveness of our newly incorporated
phase information as well as the novel features.

Before analyzing the influence of different parameters on
performance of PADS, we first present the final access results.
Balancing the performance and runtime delay, with sliding
window size and number of eigenvalues setting to be 50 and
3, the TN rate and TP rate of PADS would be greater than
98% and 97% in average, respectively.

3) Impacts of Sliding Window Size: Intuitively, the larger
the size of sliding window is, the better the performance gains,
since the influence of temporal variance would be relieved by
using large portion of data. It can be verified in Figure 15,
which presents the change of detection rate against window
size. For all three systems, the detection rates consistently
raise up when sliding window size increases. Yet it is not a
panacea. When sliding window size exceeds some threshold,
the intrinsic temporal variance of CSI will become comparable
to variance caused by human motion, which offsets the benefit
of increasing window size, stalling or even reversing the rising
trend of detection rates.

4) Impacts of Number of Features: Different from eigen-
values of correlation matrix used in FIMD, whose principle
portions are concentrated in first two eigenvalues, eigenvalues
of covariance matrix used in PADS are more distributed. As a
result, more features used might result in higher detection rate.
Figure 16 shows the performance of alternate systems, PADS
and FIMD, when different number of features are employed.
As seen, with the number of features increased, the detection
rate of PADS increases and remains stable when the number
of features reaches 5. In contrast, the turning point of FIMD
is 4, after which the performance drops significantly due to
addition of useless eigenvalues with high order.

5) Impacts of Number of Antennas: The impacts on de-
tection performance of number of antennas we leveraged in
PADS system are studied by testing several human motion
cases. Figure 17 shows the promotion of detection rate by
using multiple antennas against single antenna. Except for
those cases which are completed detected with single antenna,
using multiple antennas improve the performance of PADS
system significantly, due to the decreasing of the probability
that a “bad” antenna is used in PADS system.

6) Performance against Dynamic Speed: So far, we have
been focusing on general performance of PADS system. To
study the beneficial gain of more sensitive features used in
our system, we compare the performance of PADS, FIMD and
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Figure 17. Detection rate of cases with different number of antennas
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Figure 18. Detection rate of human motions with dynamic speed

RSSI-based system in different scenarios when the intruders
walk with dynamic speeds. Figure 18 shows the detection rate
of human motion with different speeds. With human walks
slowly, both FIMD and RSSI-based system experience fall
of performance to different extents, while the performance of
PADS retains almost unchanged even human walk very slowly.
In summary, comparing to drastic changes of amplitudes
when fast human motion exists, the changes of phases are
much more sensitive to slow human motion, and thus can be
leveraged to maintain the high performance in the situation
that human walk very slowly.

VI. CONCLUSIONS

In this study, we design and implement a WiFi-based
sensing system for passive detection of moving targets. To
the best of our knowledge, this is the first to exploit the more
sensitive phase information other than amplitude information
in this field. We have conducted extensive experiments and the
evaluation results show that both sensitivity and robustness are
improved simultaneously compared with previous approaches.
We open up the utilization of CSI’s phase information for
passive target detection and future work will focus on taking
full advantage of CSI.
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