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Wireless indoor positioning has been extensively studied for the past two decades and continuously attracted
growing research efforts in mobile computing context. As the integration of multiple inertial sensors (e.g.,
accelerometer, gyroscope, and magnetometer) to nowadays smartphones in recent years, human-centric mo-
bility sensing is emerging and coming into vogue. Mobility information, as a new dimension in addition to
wireless signals, can benefit localization in a number of ways, since location and mobility are by nature
related in physical world. In this article, we survey this new trend of mobility enhancing smartphone-based
indoor localization. Specifically, we first study how to measure human mobility: what types of sensors we
can use and what types of mobility information we can acquire. Next, we discuss how mobility assists lo-
calization with respect to enhancing location accuracy, decreasing deployment cost, and enriching location
context. Moreover, considering the quality and cost of smartphone built-in sensors, handling measurement
errors is essential and accordingly investigated. Combining existing work and our own working experiences,
we emphasize the principles and conduct comparative study of the mainstream technologies. Finally, we
conclude this survey by addressing future research directions and opportunities in this new and largely
open area.
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1. INTRODUCTION

Modern smartphones have been equipped with a number of sensors, which make
smartphones not only a communication tool, but also a sensing device. After several
years of this trend since iPhone’s birth, in addition to point-to-point phone calls, smart-
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phones are rapidly becoming an important interface that bridges the physical and dig-
ital worlds.

Taking the case of an iPhone, it includes various types of sensors (including mi-
crophone, camera, proximity sensor, GPS, accelerometer, gyroscope, compass, etc.),
through which sound, image, video, location, and mobility information can be mea-
sured by phones. Thus, human-centric environmental sensing is brought forward.
Based on smartphones, we are able to know and record user movements (standing, sit-
ting, walking, running) [Park et al. 2012] [Brajdic and Harle 2013] [Wu et al. 2013b],
user environments (indoor/outdoor, office/home, on board) [Rachuri et al. 2010] [Zhou
et al. 2012b] [Yang et al. pear], and user activities (driving, cycling, sleeping, having a
meeting or class) [Yang et al. 2011] [Zhou et al. 2012a] [You et al. 2013].

The richness of sensors reinvents the smartphone as a magic box, in which many
novel mobile applications are given birth and developed. One simple but interesting
application is to help users judge the taste of a watermelon without cutting it. The
way is that users first press a phone closely against a watermelon and then knock
the watermelon from outside. The application then provides a suggestion according
to the sound of knocking, which is automatically recorded by microphones. A more
complicated application is to monitor the quality of all-night sleeping. When a user go
to bed, he puts a phone on the bed as well, with the built-in sensors detecting the body
and limb movements. The phone offers a sum-up report of sleeping based on some
professional medical knowledge when the user gets up in the morning. The inertial
sensors play a key role in this application.

In retrospect, before the prevalence of smartphones, whereas laptops, PDAs, and or-
dinary phones are all truly mobile devices, they have seldom been involved in human-
centric sensing for lack of sensors.

Although smartphone-based sensors can facilitate a wide range of services, this ar-
ticle focuses on positioning; that is, how mobility (measured by inertial sensors) in-
creases localizability of nowadays indoor localization systems.

Accurate, reliable and ubiquitous indoor localization systems are the key enabler
for a wide range of personal, commercial, medical and public services and applica-
tions. Different from outdoor positioning where GPS almost dominates the market,
indoor localization embraces a technology flourish. Many techniques and systems are
designed and come into service, providing various levels of accuracy, cost, and appli-
cability. For example, optical positioning mainly targets at sub-millimeter application
domains, yet involves privacy concerns and intensive computing complexity [Mautz
and Tilch 2011]. Ultrasonic signals generally offer an accuracy of centimeters [Priyan-
tha et al. 2000] [Ubisense 2013] at the cost of extra ultrasound infrastructure. With
the astonishing growth of wireless devices and networks, wireless indoor localization
has attracted extensive research efforts in the past two decades [Bahl and Padmanab-
han 2000] [Youssef and Agrawala 2005] [Ni et al. 2003] [Azizyan et al. 2009] [Sen et al.
2012] [Lim et al. 2006] [Constandache et al. 2010b] [Liu et al. 2012] [Yoon et al. 2013]
[Sen et al. 2013] [Liu et al. 2013].

The diversity of application requirements results in the concurrent progresses of
different wireless-based positioning techniques. Among all techniques, WiFi-based po-
sitioning is one of the most popular one, mainly due to the world-wide availability of
WiFi technology. The rationale behind WiFi positioning is straight-forward. A mobile
device, at somewhere covered by WiFi signal, records the hearable WiFi Access Points
(APs) and their corresponding signal strength as the radio signal characteristics (a.k.a.
signal fingerprint) for this specific position. Such a fingerprint, as a location query, is
further sent to a location service provider who has a WiFi fingerprint database of a
great amount of fingerprints collected at every position within an area of interest. The
location service provider then retrieves the database for the most similar fingerprint
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with respect to the location query, and returns its corresponding recorded location as
the location estimation. The uniqueness of WiFi APs (in terms of the MAC addresses)
and the signal attenuation across space account for the principle of WiFi positioning.
From the systematic aspect, the process of localization is composed of two stages: train-
ing and operating [Yang et al. 2012]. During the training phase, traditional methods
involve a site survey process (a.k.a. calibration), in which professional engineers record
the signal characteristics (known as fingerprints) at every location of an interested
area. The collected fingerprints and their corresponding locations are then associated
with each other to build up a fingerprint database. When a new user tries to locate
himself during the operating phase, he queries his location by uploading his signal
fingerprint to the server. The server retrieves the database by comparing fingerprints,
and returns the location with the best matched fingerprint to the user.

WiFi positioning is booming recently. In late 2011, Google Map 6.0 announced new
services of indoor positioning and navigation [McClendon 2011]. Other followers in-
clude Microsoft’s Bing Maps, Baidu’s Interior Maps, Nokia’s Here (formerly Ovi Maps),
etc. In addition, Skyhook Wireless [Skyhook 2013] manages a global location database
with more than a billion Wi-Fi access points and millions of venues and serves a va-
riety of customers from individual application developers to industry giants including
Apple, Google, and Sony.

Despite of its success, WiFi positioning faces several challenges on its fast track of
development.

— Location error. The indoor attenuation of wireless signals is extraordinarily unpre-
dictable because of complex environmental factors, leading to decreased performance
of widely used signal models. For instance, multi-path fading brings about strenu-
ous fluctuation on signal amplitudes in small scale of only several centimeters [Sen
et al. 2013] [Wu et al. 2012]. Besides, environmental dynamics (such as human move-
ments, door opening and closing, and furniture rearrangement) can also change the
signal strength distribution across an area [Fet et al. 2013]. To make things worse,
some researchers observe experimentally that two far-away locations in an open in-
door space may have similar signal fingerprints, which, according to the scheme of
WiFi positioning, may induce incorrect location estimation [Liu et al. 2012] [Sun et al.
2013al.

— Deployment cost. The procedure of site survey is time-consuming, labor-intensive,
and vulnerable to environmental dynamics [Chintalapudi et al. 2010][Yang et al.
2012]. However, it is inevitable for fingerprinting-based approaches, since the finger-
print database relies on locationally labeled fingerprints from on-site records [Chin-
talapudi et al. 2010] [Yang et al. 2012] [Wang et al. 2012]. Even the indoor mapping
services of Google Map 6.0 was available only at selected airports and shopping malls
in several districts (e.g. the US and Japan) at its release [McClendon 2011]. Its ap-
plicability to broader areas is strangled by the limited quantity and granularity of
fingerprint data of building interiors. The world-wide usage of indoor positioning
calls for low deployment cost.

— Absence of location context. Locations, in indoor environments, are strongly re-
lated to human activities, which motivates people to discover the semantic context
of locations. Location context refers to the name, usage, function, and activity of a
specific location that users can understand and feel intuitively [Schmidt et al. 1999]
[Kim et al. 2009] [Azizyan et al. 2009] [Ye et al. 2011]. In many cases, the context of a
location is equally valuable to or even more valuable than location itself. For example,
comparing with the absolute X-Y coordinates, it is more meaningful for users inside
buildings to know room numbers or room usages such as office rooms, meeting rooms,
or corridors. Furthermore, a route in a floor plan towards the nearest printer is more
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convenient than the printer’s location coordinates. Nevertheless, WiFi positioning is
powerless on distinguishing rooms, identifying room usage, generating indoor maps,
and characterizing user activities. So far, the acquisition of location contexts mostly
relies on human inputs.

Recently, an increasing number of researchers realize that mobility information, as
a new dimension in addition to wireless signals, can be employed to deal with the 3
above-mentioned challenges and consequently upgrade indoor positioning to a higher
level [Constandache et al. 2010b] [Wang et al. 2012] [Yang et al. 2012] [Rai et al. 2012]
[Sun et al. 2013a] [Wu et al. 2013a]. It is easy to understand that being aware of
mobility could benefit localization, since location and mobility are by nature related
in physical world. The current location of a moving object depends on both its past
location and its movements.

In this article, we survey this new trend of mobility enhancing smartphone-based
indoor localization. Specifically, we first study how to measure human mobility: what
types of sensors we can use and what types of mobility information we can acquire.
Next, we discuss how mobility assists localization with respect to enhancing location
accuracy, decreasing deployment cost, and enriching location context. The enhance-
ment of location accuracy can be seen as a direct result of the add-on of mobility, while
the latter two require more complicated mechanisms. Moreover, considering the qual-
ity and cost of smartphone built-in sensors, handling measurement errors is essential
and accordingly investigated. Combining existing work and our own working experi-
ences, we emphasize the principles and conduct comparative study of the mainstream
technologies. Finally, we conclude this survey by addressing future research directions
and opportunities in this new and largely open area.

2. WHAT TYPES OF SENSORS

Among various sensors, inertial measurement units (IMUs) are one of the most widely
adopted to measure mobility. An IMU is “an electronic device that measures veloc-
ity, orientation, and gravitational forces”, and often constitutes of accelerometers and
gyroscopes, and magnetometers [Wikipedia 2014a]. IMUs are primarily designed for
“inertial navigation systems of aircraft, spacecraft, watercraft, and guided missiles”
[Wikipedia 2014a] by means of dead reckoning, which refers to “the process of cal-
culating one’s current position by using a previously determined position, or fix, and
advancing that position based upon known or estimated speeds over elapsed time and
course” [Wikipedia 2014b]. Modern smartphones also possess various types of inertial
sensors, making them an integrated platform for communication, sensing and comput-
ing. Constrained by cost, size, and power consumption of sensors, however, smartphone
IMUs have their own unique characteristics. In this section, we review the principles,
current development, and future trends of typical inertial sensors on smartphones.

2.1. Smartphone IMU: Principles

Modern smartphones are equipped with various inertial sensors. They compose a sim-
ple but workable unit of inertial sensing and are therefore considered an IMU of smart-
phones. Smartphone IMUs typically include three major types of sensors: accelerome-
ter, gyroscope, and magnetometer.

2.1.1. Accelerometers. An accelerometer is an infrastructure to measure acceleration,
which works as “a damped mass on a spring” [Wikipedia 2014c] leveraging Newton’s
laws of motion. Modern accelerometers are usually micro electro-mechanical systems
(MEMS), and in fact “the simplest MEMS devices possible” [Wikipedia 2014c]. The SI
unit of acceleration is meters per second squared (m/s?), or popularly in terms of g-
force (g). In practice, it also requires local gravity to calculate the actual acceleration
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Table I. Smartphone IMUs.

Host Smartphone Sensor Type Axis Package Measurement Range Sensitivity Temperature Manufacturer Year
Size Range
(mm?®) (°0)
Accelerometer
iPhone5s BMA220 3 2*%2%0.98 +2/+4/4+8/+16g 2/4/8/16 LSB/g -40~85 Bosch 2013
iPhone4 LIS331DLh 3 3#3*1 +2/+4/4+8g 250/500/1000 LSB/g -40~85 ST 2010
iPhone 3G LIS331DL 3 3%3*1 +2/48g 14/56 LSB/g -40~85 ST 2008
Samsung Galaxy SII LIS3DH 3 3#3*1 +2/4+4/4+8/+16g 83/250/500/1000 LSB/g  -40~85 ST 2011
Google Nexus 5 MPU-6500 6 3%3%0.9  42/+4/4+8/+16g 211/212/213/214 1.SB/g ~ -40~85 InvenSense 2013
Motorola Droid BMA150 3 3*3%0.9  +2/+4/+8g 64/128/256 LSB/g -40~85 Bosch N/A
Gyroscopes
iPhonebs L3G4200D 3 4%4%1.1  4250/4+500/+2000 8.75~70 mdps/digit -40~85 ST 2013
iPhone4 L3G4200D 3 4%4%*1.1  £250/+500/£2000 8.75~70 mdps/digit -40~85 ST 2010
iPhone 3G N/A N/A N/A N/A N/A N/A N/A 2008
Samsung Galaxy SII  L3G4200D 3 4%4%1.1  4250/4+500/4£2000 8.75~70 mdps/digit -40~85 ST 2011
Google Nexus 5 MPU-6500 6 3*3%0.9  £250/4+500/+1000/+2000 7.60~61 mdps/digit -40~85 InvenSense 2013
Motorola Droid N/A N/A N/A N/A N/A N/A N/A N/A
Magnetometers
iPhonebs AK8963 3 3%3*0.75 N/A 0.15~0.6 . T/LSB -30~85 AKM 2013
iPad2 AKB8975 3 4%4%0.75 N/A 0.3 uT/LSB -30~85 AKM 2011
Samsung Galaxy SII AK8975 3 4%4%0.75 N/A 0.3 uT/LSB -30~85 AKM 2011
Google Nexus 5 AK8963 3 3%3*0.75 N/A 0.6 uT/LSB -30~85 AKM 2013
Motorola Droid AKB8973 3 4%4%0.7 N/A 1.6 uT/LSB -30~85 AKM N/A

value w.r.t. the Earth. The value of local gravity can be obtained by device calibration
at rest or gravity modeling given the current position [Wikipedia 2014c].

2.1.2. Gyroscopes. A gyroscope is an instrument to measure or maintain orientation
in principle of angular momentum [Wikipedia 2014d]. It is mechanically “a spinning
wheel or disc in which the axle is free to assume any orientation” [Wikipedia 2014d].
Besides applications in general navigation, gyroscopes are often exploited in conjunc-
tion with accelerometers to derive robust direction information (e.g. X-, Y-, Z-axis accel-
eration with the extent and rate of rotation in roll, pitch, and yaw, [Wikipedia 2014d]).

2.1.3. Magnetometers. A magnetometer (or magnetic field sensor), is a device that mea-
sures the strength and the direction of magnetic fields [Wikipedia 2014e]. The types
of magnetometers vary. Magnetoresistive sensors and Hall effect devices are the most
popular, yet there is also a huge dispute, both technically and commercially, on the use
of the two for consumer devices.

2.2. Smartphone IMU: Typical Performance

Table I lists the parameters of IMUs of several fashionable consumer electronic devices
ranging from smartphones to tablets. IMU has demonstrated its wide popularity in the
smartphone market. In addition to the latest consumer devices listed in Table I, almost
every smartphone today has a motion sensor embedded inside.

In terms of performance, IMUs are qualified to a large number of services, such as
linking movements of the user’s wrist, arm, and hand to applications, navigation with
and between pages, the movements of characters in a game, etc. However, researchers
and application developers complain that the accuracy of smarpthone IMUs is insuffi-
cient for dead reckoning and other location-based services. In fact, compared with the
generally believed accurate IMUs used in Micro Unmanned Aerial Vehicle (MUAV)
and other industrial application, the smartphone IMUs possess the same or similar
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core sensing component, but differ in sensor screening, installation error calibration,
cross axis error calibration, zero point correction, temperature drift compensation, etc.
For instance, ADI’'s ADIS16405 and ADIS16400 are based on the same ADI’s low cost
sensing elements, but the former is more expensive than the latter. The only two major
differences are the bias temperature coefficient and sensitivity temperature coefficient.
ADIS16405 is carefully calibrated in various temperatures ranging from -40 to 85 °C,
resulting in an increased cost on testing.

The reduced factory-calibration efforts contribute to the low cost of smartphone
IMUs. As gyroscopes have experienced a dramatic drop in cost, the cost of IMUs is
basically acceptable by mainstream smartphones. Yet researchers have to avoid the
direct use of dead reckoning with low cost sensors, and resort to pedestrian motion
modeling for accurate mobility measurements (Section 3).

2.3. Smartphone IMU: Future Potentials

With advances in sensor design and manufacturing, increasingly powerful sensors of
various types are now available in smartphones at low costs, depending on which novel
applications are rising in response. Accelerometers today can pick up the sound of key
strikes on an alphanumeric keyboard with such precision that a computer program
can determine what keys are being struck; magnetometers can detect the 50/60 Hz
magnetic field emanating from a power cord; barometers can notice the atmospheric
change between floors of a building.

Another future trend of IMU is to combine multi-sensor modules and deploy ded-
icated sensor fusion algorithms, thus advancing the quadruple convergence of high
accuracy, small size, efficient energy, and low cost. Motion sensors in consumer and
mobile applications will be dominated by combo sensors, with their revenue hitting
$1.4 billion by 2016, or 71% of the overall market, while that of discrete instruments
tends to shrink gradually [Dixon 2012]. In fact, the 6-axis combo sensor has domi-
nated as a ready substitute for the 3-axis design. For instance, the recent MPU-6500
chip integrates a 3-axis accelerometer, a 3-axis gyroscope, and an on-board digital mo-
tion processor [InvenSense 2013]. And manufacturers have joined the combo sensor
race and other pioneer examples include ST’s iNEMO, InvenSense’s MPU-9150, Bosch
Sensortec’s BNO055, Kionix’'s KMX61G, Maxim Integrated’s MAX21100, Freescale’s
FRDM-FXS-MULTI-B, MiraMEMS’s DC210, mCube, etc.

Combo sensor IMUs enable in-chip data fusion for accurate motion tracking. Early
industry efforts using rudimentary sample codes available from some sensor manu-
facturers have been unsatisfactory and some codes of sensor usage are proved to be
vulnerable even in the Android specification. Today, major sensor suppliers have re-
alized that algorithms and software are essential elements of their product offerings.
Independent middleware developers have created sensor libraries that not only pro-
vide accurate headings by keeping the sensors in proper calibration, but also mitigate
against the distorting effects of internal magnetic interferences.

Current sensors present metrological measurements of their physical environment
but, without proper perspectives and interpretation, those sensor readings are often
under utilized. Even extracted mobility information can be further refined to infer high
level knowledge such as locations, activities and behaviors of users, spawning many
applications of context-aware computing in which mobility, as well as user locations, is
considered as key context [Abowd et al. 2002] [Yang et al. pear]. This expands the role
of mobile devices beyond a sensor of physical environments, to an actuator that adapts
its behaviors accordingly.
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Fig. 1. An illustration of human mobility information derivable from phone sensors.

3. WHAT TYPES OF MOBILITY INFORMATION

The rich inertial sensing modalities on smartphones report numerous instantaneous
motion measurements, such as acceleration, angular velocity and absolute direction,
via built-in accelerometer, gyroscope and compass, respectively. To assist indoor lo-
calization and navigation, these low level physical displacement and directional mea-
surements are integrated over time and augmented with location context into more
complex Auman mobility information, such as walking steps, trajectories, locomotion
modalities (e.g., walking and running), virtual landmarks (e.g., stairs and lifts), etc.
Figure 1 illustrates a typical scenario of indoor inertial sensing as well as types of mo-
bility information derivable from phone sensors. However, assembling human mobility
information from phone sensory data is an endeavor fraught with obstacles. We briefly
summarize them into three aspects:

— Noisy sensor measurements. It is inevitable to induce noise in raw sensory mea-
surements. When integrating these physical measurements over time, even small
errors may drift dramatically. For instance, errors accumulate quadratically when
derive displacement by twice integrating acceleration.

— Unconstrained phone placement. Since most inertial sensors measure motion
information, these measurements are sensitive to sensor placements [Harle 2013].
For instance, acceleration traces exhibit more distinctive patterns with foot-mounted
accelerometer [Angermann and Robertson 2012] than phone accelerometer put in a
bag due to random bouncing of phones.

— Complex human locomotion. Human body can be in various poses, with at least
244 degrees of freedom [Zatsiorsky 1998]. Individuals of different heights, weights,
ages, health states, etc., can exhibit different motion gaits. Furthermore, people may
sometimes behave unpredictably. It it therefore challenging to extract consistent and
robust locomotion patterns and accurate mobility information leveraging only phone
sensors.

Since most indoor localization and navigation systems target at pedestrians, we
mainly focus on step and stride (i.e., two steps) related human mobility information,
which is fundamental and specific to pedestrians. In this section, we elaborate the
principles to derive displacement and direction information of step vectors, as well as
integrated and behavioural human mobility information.

3.1. Displacement Information

Step detection and counting is a basic module in most inertial based pedestrian local-
ization and navigation systems. The physical underpinning is to search for cycles in ac-
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Fig. 2. Acceleration magnitudes during a sample walking demonstrating the repetitive patterns of walking.

celeration traces to capture the repetitive movements during walking. Figure 2 depicts
the raw acceleration traces during a sample walking, which exhibits notable repetitive
cycles. The subsequent sections summarize algorithms for step detection and counting
using phone accelerometers, followed by a brief discussion on the individual-specific
stride length.

3.1.1. Step Detection and Counting. When input an acceleration trace, step detection al-
gorithms slice and label the trace into steps exploiting the repetitive patterns of walk-
ing, and the labels are then summed into step counts. We roughly group these algo-
rithms as follows:

— Temporal Analysis. The cyclic property of walking is directly reflected in the accel-
eration trace in the time domain. Since heel strikes tend to introduce sharp changes,
numerous schemes propose to detect magnitude peaks [Randell et al. 2003] [Wu
et al. 2013a], local variance peaks [Jimenez et al. 2009] [Yang et al. 2012], local
minima [Wang et al. 2012] [Sen et al. 2013], zero-crossings [Goyal et al. 2011], or
level-crossings [Zhu et al. 2013] (levels defined by historical mean and variance) from
the low-pass filtered acceleration trace. Auto-correlation is a more robust means to
magnify periodicity in the time domain regardless of the absolute amplitude of ac-
celeration [Rai et al. 2012]. Steps can also be recognized by matching with a stride
template either linearly (e.g., by cross-correlation [Marschollek et al. 2008]) or non-
linearly (e.g., by Dynamic Time Warping [Rong et al. 2007]), yet at a higher cost.

— Spectral Analysis. When the acceleration trace contains at least two walking cycles,
it is possible to identify the repetitive walking patterns in the frequency domain. The
rationale is that walking movements would generate dominant frequencies around
2Hz, a unique spectral characteristic compared with other human activities. Short-
Term Fourier Transform (STFT) [Brajdic and Harle 2013] and wavelet transforms
[Barralon et al. 2006] [hua Wang et al. 2012] have been employed to extract dominant
frequencies, and steps are counted as the sum of the transform coefficients of the
walking frequency.

— Feature Clustering. Besides the above pattern analysis approaches, research also
resorts to machine learning techniques to classify walking steps via features from
acceleration traces. Various features have been explored, including statistics [Siirtola
and Roning 2012], entropy [Bao and Intille 2004], as well as temporal correlation
[Ravi et al. 2005] and Fourier transform coefficients [Kobayashi et al. 2011]. Albeit
its high computational cost, feature clustering based schemes are more general and
are often applied to classify multiple human activities beyond walking.
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Table Il. Recent Smartphone based Step Counting Summary.

Citation Techniques Cost Error Rate

decide levels upon historical statistics
[Zhu et al. 2013] detect level crossings low N/A

[Yang et al. 2012] threshold on local variance low 2%
detect two consecutive local minima

[Wang et al. 2012][Sen et al. 2013] check a significant local maxima low 2%
detect step starts and ends by threshold

[Wu et al. 2013b] identify steps via finite state machine low about 2%

[Rai et al. 2012] normalized auto-correlation medium  0.6%

[Rong et al. 2007][Brajdic and Harle 2013] template matching via DTW medium < 2%

[Barralon et al. 2006][Brajdic and Harle 2013]  2°'° CWT coefficients outside walking frequency
) J inverse transform and count mean crossings

[Mannini and Sabatini 2011] two-state HMM clustering high about 1.3%

medium  about 1.3%

Table IT summarizes some recent smartphone based step counting schemes in terms
of techniques, cost and performance. We refer interested readers to [Harle 2013] for a
review on step counting strategies via non-smartphone IMUs (e.g. foot mounted) and
non-inertial sensors (e.g. ultrasonic). Temporal analysis based schemes are the most
intuitive in concept, and facilitate physical explanation on the extracted feature met-
rics. The primary drawback is that the cyclic walking patterns are mixed with other
noises in the time domain. Spectral analysis based approaches offer an orthogonal do-
main to distinguish frequencies of walking and other noises, yet are less intuitive. For
example, it is difficult to distinguish fine-grained walking patterns such as heel-up and
heel-down directly from the signal spectrum. In addition, the accuracy of spectral anal-
ysis improves with the amount of signal periods contained in the input signal. Hence
spectral analysis often requires more signals samples than temporal analysis. Feature
clustering is agnostic to the underlying physical meanings, yet can provide higher ac-
curacy given sufficient training efforts. As shown in Table II, one recent work exploit-
ing a modified auto-correlation scheme in the time domain [Rai et al. 2012] reports
high detection accuracy, since auto-correlation techniques increase signal-to-noise ra-
tio with the increase of input signal length, and the temporal approach facilitates other
auxiliary error correction schemes as the signal features have clear physical interpre-
tations.

Although step counting accuracy of above 99% is often reported under laboratory
conditions [Harle 2013], unified performance comparison is difficult. A recent study
[Brajdic and Harle 2013] conducted a realistic evaluation of 3 categories of step count-
ing algorithms with 27 people and 130 traces. They recommend standard deviation
thresholding and windowed peak detection for its simplicity, with reasonable error
rate of 3% evaluated with 6 phone placements and 6 user behaviours. However, it re-
mains unsettled whether these algorithms would be robust to varying walking speeds,
rough surfaces, etc.

3.1.2. Stride Length Estimation. Knowing stride length is necessary when converting
steps into distance traversed. Pedestrians may exhibit different stride lengths due to
variety in height, walking speed and style. According to [Weinberg 2002], step length
may vary up to 40% at the same walking speed, and 50% with various speeds of the
same person. Assuming constant stride length is efficient when frequent landmark
calibration is available [Wang et al. 2012] or when only short walking distance is re-
quired [Sen et al. 2013]. Nevertheless, with the emerging trend of crowdsoucing based
indoor localization and navigation [Wu et al. 2013a] [Rai et al. 2012] [Yang et al. 2012]
[Shen et al. 2013] [Purohit et al. 2013] [Jiang et al. 2013a], walking traces of diverse
users are expected to be calibrated and integrated. Therefore, it would boost the qual-
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ity of the crowdsourced mobility information by considering individual-specific stride
length. Some pioneer efforts in stride length estimation are summarized as follows.

— Offline Calibration. An intuitive way to estimate user-specific stride length is to
divide a known walking distance by measured step counts. However, since the walk-
ing patterns may not distribute uniformly, this method may induce bias on dominant
walking patterns [Cho et al. 2010].

— Online Estimation. Some recent systems also propose to simultaneously estimate
stride length and user locations via an augmented particle filter [Rai et al. 2012].
The rationale is to iteratively select the optimal stride length that fits user traces
and map constraints.

— Stride Length Modeling. Originated from human kinematics, other studies corre-
late stride length with step frequency [Margaria and Margaria 1976] [Ladetto 2000]
[Gusenbauer et al. 2010]. The key observation is that stride length tends to be shorter
when walking slowly than fast [Bertram and Ruina 2001]. A simple linear relation-
ship suffices [Cho et al. 2010], yet the model parameters, which are trained offline,
are specific to walking conditions, such as wearing sport shoes or high heels [Shen
et al. 2013].

Accurate stride length improves displacement estimation, yet the accuracy increase
is often marginal since heading drift typically dominates the errors [Harle 2013]. Al-
ternatively, when combining wireless and inertial based localization schemes, some
novel explorations have partially eliminated the need to estimate user-specific stride
length via virtual landmark assisted normalization [Shen et al. 2013] or error-tolerant
transforms [Yang et al. 2012].

3.2. Direction Information

The direction of steps during walking is usually obtained by phone gyroscope and com-
pass (magnetometer). The former outputs angular velocities in 3D, which are inte-
grated over time into direction change (turning), while the latter directly measures
the absolute orientation (heading) of the phone with respect to the magnetic North.
Although compasses alone prove to be feasible for outdoor dead reckoning [Constan-
dache et al. 2010b] [Wang et al. 2013], the two modalities often work synergistically in
the literature of indoor localization and navigation [Li et al. 2012a] [Wang et al. 2012]
[Rai et al. 2012], due to the unique challenges indoors and their complementary error
characteristics:

— The metal and conducting material indoors can significantly disturb compass read-
ings and lead to short-term heading estimation errors of up to 100° [Afzal et al. 2001].

— Gyroscopes remain unaffected by magnetic fields, yet suffer from bias caused by ini-
tial direction [Wang et al. 2012], and the estimated orientation drifts substantially
with time [Sen et al. 2013].

In this subsection, we first review turning estimation via gyroscope, and then sum-
marize how to combine compass with additional sensory modalities to enhance heading
estimation.

3.2.1. Turning. The layout of many indoor environments consists of perpendicular cor-
ridors and corners, where pedestrians tend to walk in straight lines and take turns.
Turning information benefits indoor localization systems in a range of aspects. For in-
stance, being aware of left or right turns resolves side ambiguity in wireless angle of
arrival estimation using linear antenna arrays [Sen et al. 2013]. Turning information
also facilitates stride length estimation [Rai et al. 2012] and serves as landmarks to
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Fig. 3. An illustration of magnetic offset and placement offset when estimating heading via phone compass.

assist drift calibration in pedestrian dead reckoning [Wang et al. 2012] [Park et al.
2013].

A turn is detected when the relative orientation measured by gyroscopes experi-
ences an abrupt change. To differentiate changes corresponding to turns from those
caused by noise, only heading changes exceeding a pre-defined threshold are deter-
mined as turns. In addition, heading changes within only a short time interval are
also discarded. [Park et al. 2013] reports precision of about 85% and recall of 100%
for turn detection considering phone placement diversity (messing, calling, swing and
in pockets), device type (3 types of phones) and user difference (8 volunteers). Accord-
ing to [Park et al. 2013], phone placement that introduces back and forth movements
deteriorates the performance of turn detection most.

3.2.2. Heading. The main hurdle for accurate heading estimation via phone compass
lies in two fold:

— Magnetic Offset. Metal and conducting material nearby can disturb the perceived
north of phone compass, thus leading to offset in heading estimation. Magnetic offset
is location specific, and thus unpredictable beforehand [Rai et al. 2012].

— Placement Offset. The compass measures the orientation of the phone, while the
phone’s heading may not be aligned with the moving direction of the user. Thus place-
ment offset refers to the difference between the phone’s orientation and the moving
direction of the user.

Figure 3 illustrates the magnetic and placement offset when estimating heading of
user motion via phone compass indoors.

Table III summarizes some representative proposals to enhance heading estima-
tion. While some efforts attempt to filter magnetic offset on consecutive compass read-
ings [Youssef et al. 2010], others fuse multiple sensors to improve estimation accuracy
[Wang et al. 2012] [Li et al. 2012a] [Rai et al. 2012] [Shen et al. 2013] [Sun et al. 2013b].
The rationale is to exploit additional sensors (e.g. gyroscopes) to evaluate the compass
readings [Wang et al. 2012] [Li et al. 2012a], and rectify heading estimation iteratively
during walking (e.g. particle filter)[Li et al. 2012a] [Rai et al. 2012]. According to the
additional sensory modalities utilized, we categorize these schemes as follows:

— Inertial Verification. Since multiple inertial sensors are integrated on a single
smartphone, they tend to perceive similar movements during walking. For exam-
ple, compass value is probably valid if the readings of phone compass and gyroscope
experience correlated trend [Wang et al. 2012], which assists to discard compass val-
ues containing severe magnetic offset. Acceleration traces, on the other hand, can be
utilized to identify the time when the phone placement is the same to that when the
phone is first put into a pocket, which helps to accurately infer the moving direction
of the user, given the initial phone placement offset[Li et al. 2012a].

—YVisual Reference. Since modern buildings are mostly rectangular [Steadman
2006], the straight ceiling edges offer an orthogonal reference to determine heading
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Table Ill. Representative Heading Estimation Approaches.

Citation Sensors Techniques Errors Limitation

Effective only for

[Youssef et al. 2010] CP Time domain averaging N/A ¢ ..
emporary magnetic interference
Gyroscope verification within 20° Initial heading estimation errors
[Wang et al. 2012] CP+G Magnetic landmark calibration for 90% cases  Dependence on landmarks
. Identify inference points 23° Initial heading estimation errors
[Li et al. 2012a] CP+G+A Particle filter for 95% cases  Converge time
[Rai et al. 2012] CP+G+A Estimate offset range via spectral analysis N/A Extra spect.ral processing
Augmented particle filter Converge time
[Roy et al. 2014] CP+G+A Human walking pattern analysis <6° Require several steps of walk

Localize, quantify, and isolate magnetic interference
Detect visual patterns on ceilings
and integrate with compass readings

High computation overhead

[Sun et al. 2013b] CP+CA+A Fail if unable to take photos

1° on average

CP - compass, G - gyroscope, A - accelerometer, CA - camera

information. In [Sun et al. 2013b], the ceiling edges are extracted from images taken
by phone camera using computer vision techniques. The orientation of the detected
edges relative to the phone is also computed. Together with the absolute orientation
of the rectangular building (and thus the ceiling edges), they achieve average heading
precision of 1° with arbitrary phone holding poses. Although its heading estimation
accuracy improves by dozens than inertial schemes, the computational overhead, en-
ergy consumption, as well as the perquisite to take photos, impede its viability.

In summary, while compass directly provides the absolute directions of phones, mag-
netic offset and placement offset considerably deviate compass readings from the ac-
tual moving direction. Recent advances fuse extra sensors with compasses to provide
robust heading estimation, yet accuracy still remains a bottleneck for inertial based
indoor localization and navigation systems. One recent work [Roy et al. 2014] reduces
heading estimation error to less than 6° by in-depth video-based human walking pat-
tern analysis and magnetic interference localization and isolation, which is approach-
ing the accuracy of visual reference based methods. The primary hurdle for this bot-
tleneck is that inertial based heading estimation schemes exploit sensors to perceive
the relatively unconstrained human behaviours, making precise walking direction a
micro-motion that requires subtle identification [Roy et al. 2014]. In contrast, visual
reference based approaches [Sun et al. 2013b] leverage static landmarks such as ceil-
ing edges, yet improve estimation accuracy at the cost of computation and energy con-
sumption.

3.3. Integrated Information

Previous subsections mainly elaborate the principles and methods to derive short-term
displacement and direction information (e.g. steps and turns) from sensory data. In
this subsection, we demonstrate how the instantaneous displacement and direction
information is integrated into more complex human mobility information.

3.3.1. Trajectory. A pedestrian trajectory consists of a sequence of step vectors. While
inertial based indoor localization and navigation systems require accurate trajectories
to track pedestrians, some recent work [Wu et al. 2013a] [Yang et al. 2012] also exploit
comparatively coarse-grained trajectory information to assist wireless localization. In
[Wu et al. 2013al], trajectories are utilized to infer whether the wireless fingerprints
from different locations are reachable with each other. Yang et al. [Yang et al. 2012]
utilize stress-free walking distances, rather than rigid trajectories, to transform the
localization problem from two-dimension floor plan space to a high dimension wireless
fingerprint space.
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Accurate trajectory estimation still lies in the core of various indoor localization
and navigation systems. Besides traditional challenges in calibrating trajectories of
a single user, the emerging trend of crowdsoucing based localization also poses new
challenges in clustering trajectories from diverse users [Rai et al. 2012] [Shen et al.
2013].

3.3.2. Locomotion Modality. Awareness of locomotion modalities (e.g. walking or run-
ning) and usage behaviours (e.g. text messaging or making a phone call) assists to
construct more elaborated motion models (e.g. adjust stride length estimation or step
counting according to varying speeds and phone placements), thus holding potential
for improving localization and navigation algorithms.

Identifying these behaviours belongs to a subset of the enormous research on ac-
tivity recognition [Ravi et al. 2005]. Some recent work has already explored to utilize
phone accelerometers to distinguish different motion modalities (walking or running)
[Iso and Yamazaki 2006] [Miluzzo et al. 2008], transportation modes (bus or metro)
[Hemminki et al. 2013], and phone poses (in hand or at ear) [Park et al. 2012].

Though promising, it is inevitable to involve relatively complex machine learning
techniques to differentiate locomotion modalities and phone placements, which incurs
considerable computation and energy overhead. It still lacks comparative studies on
the tradeoff between the overhead of distinguishing fine-grained locomotion modalities
and the performance gain on indoor localization.

3.3.3. Context Landmarks. The mobility information measured by sensors, when com-
bined with location context, can provide unique virtual landmarks, which facilitates
re-calibration and thus improves localization accuracy. The key observation is that
certain building structures would demonstrate distinctive sensor signatures. For in-
stance, the acceleration readings on an elevator experience a sharp surge and drop at
the start and the stop of the elevator. Wang et al. [Wang et al. 2012] investigate such
unique acceleration patterns of stairs, elevators, escalators, walking and standing, and
achieve an overall false positive of 0.2% and false negative of 1.1%, respectively. If the
locations of these structures are known as prior, they would serve as landmarks to
rectify dead reckoning drifts.

In case of multiple users, mobility information (e.g. trajectories) of different users
can be associated via encounters. These opportunistic encounters (e.g., Alice happened
to meet Bob) can also act as virtual landmarks to calibrate dead reckoning drifts [Con-
standache et al. 2010a] (e.g., We can adjust the trajectory of Alice to make her current
location consistent with Bob’s location, since Bob just walked out of an elevator whose
location is known as prior). Such social encounters also help to refine the plausible
locations of users [Jun et al. 2013] (e.g., if Alice met Bob, then we may safely restrain
the potential locations of Alice to the intersection between the potential locations of
Alice and those of Bob).

These novel context landmarks stem from user mobility, and are complementary
to static landmarks (or fingerprints) such as ambient sound, light and color [Azizyan
et al. 2009]. While some pioneer work has explored to incorporate the two, (e.g., inertial
patterns + WiFi RSSI [Wang et al. 2012], directions + WiFi trend [Shen et al. 2013],
its full potential still remains an open issue.

4. HOW MOBILITY ASSISTS LOCALIZATION

WiFi fingerprinting prevails among various wireless indoor localization techniques due
to its wide availability. The general framework can be divided into two phases: training
and operating. The former involves a site survey process (a.k.a. calibration), in which
RSSs from multiple APs at every location of interest are measured and recorded as
WiFi fingerprints. Accordingly a fingerprint database (a.k.a. radio map) is built, where
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Fig. 4. Typical architecture of WiFi fingerprint-based localization systems.

each location is labelled with its corresponding fingerprints. In the operating stage, to
locate a user sends a query with his current fingerprint, localization server retrieves
the fingerprint database and return the location of the best-matched fingerprints as
the user’s location estimation. A typical architecture of fingerprint-based localization
is portrayed in Figure 4. Ever since its birth, WiFi fingerprinting is considered static.
Human mobility information extends conventional wireless indoor localization to an
orthogonal dimension. In what follows, we will discuss in detail how mobility enhances
wireless localization in terms of accuracy, cost, and location context.

4.1. Mobility Enhances Localization Accuracy

Despite extensive efforts from both academics and industries in the past decade, lo-
calization accuracy remains a primary challenge, especially in mobile environments.
While proof-of-concept innovations report high accuracy under controlled settings
[Youssef and Agrawala 2005] [Lim et al. 2006], they can experience sharp performance
degradation in practice, with median error consistently above 5m [Turner et al. 2011]
and unacceptable tail errors of 12m to even 40m [Liu et al. 2012].

The root cause of such large errors in WiFi fingerprinting lies in fingerprint ambigu-
ity [Sun et al. 2013a] [Liu et al. 2012]. More specifically, a fundamental hypothesis of
fingerprint-based localization is that wireless signal features (e.g. RSS values) vary at
different locations. Each location exhibits exclusive and distinctive signal characteris-
tics, which are analogous to biometric fingerprints and are thus referred as WiFi fin-
gerprints of the locations. The ever-increasing number of APs deployed indoors offers
high-dimensional WiFi fingerprints and the potential for more accurate localization
performance. One common pre-processing procedure, for example, is to compare the
sets of detectable APs to distinguish WiFi fingerprints from distant locations. How-
ever, this approach is often coarse-grained, since locations within room ranges can
share the same detectable AP set due to the relatively large coverage of WiFi signals.
In addition, since not all APs are equally sensitive to location changes, their ability
of discerning locations varies. Therefore some pioneer efforts [Chen et al. 2006][Fang
and Lin 2012] have explored to select a subset or transform of more distinctive APs for
higher localization accuracy and energy efficiency. (Note that although AP selection
schemes indeed can improve the accuracy of WiFi fingerprinting based indoor local-
ization systems, such schemes are less relevant to the theme of harnessing mobility
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Table IV. Recent works on improving accuracy by leveraging mobility.

Citation Space Meiﬁportﬁlal;ccurzﬁg om Sensor Type  Mobility Info

MoLoc [Sun et al. 2013a] Indoor <1lm ~Tm N/A C+A Direction / Displacement
ACMI [Yoon et al. 2013] Indoor 6m N/A 89% N/A Trajectory

GloCal [Wu et al. 2013b] Outdoor ~4m ~25m N/A A+G Trajectory

WheelLoc [Wang et al. 2013] Outdoor ~40m ~60m N/A A+M Distance / Turns
Hilsenbeck el al. [Hilsenbeck et al. 2014]  Indoor 1.52m 12m N/A C+A Trajectory

Li et al. [Li et al. 2012a] Indoor 2m ~8m N/A C+A+G Trajectory

Naguib et al. [Naguib et al. 2013] Indoor ~1m ~bm N/A C+A+G Trajectory

Zampella et al. [Zampella et al. 2013] Indoor ~1m <5m N/A A+G Trajectory

Ubicarse [Kumar et al. 2014] Indoor 39cm <3m N/A G Orientation

C - compass, A - accelerometer, G - gyroscope, M - magnetometer

to enhance wireless localization. We thus omit the details and refer interested read-
ers to [Chen et al. 2006][Fang and Lin 2012] for more details.) Since distant locations
may share similar fingerprints, they may become indistinguishable. To make matters
worse, such ambiguity is intractable as it is scarcely possible to eliminate the uncer-
tainty and instability of signal propagation in the air, given that the multipath effects
are inevitable indoors.

Towards higher accuracy, recent pioneer work exploits physical layer information
[Sen et al. 2012] or incorporate acoustic ranging [Liu et al. 2012] [Liu et al. 2013],
among others. However, these methods either rely on information unavailable on com-
modity smartphones, or resort to unrealistic cooperation among a dense crowd of peers,
thus degrading the ubiquity or increasing the costs.

A promising alternative, is to leverage human mobility information acquired from
built-in inertial sensors. Table IV lists some recent works on improving wireless lo-
calization accuracy leveraging mobility. We demonstrate how they combat fingerprint
ambiguity as follows:

4.1.1. Extending fingerprint diversity. User motions captured by inertial sensors add to
the diversity of fingerprints generated from RSS observations. Specifically, user mobil-
ity indicates the physical relationships between pairs of adjacent locations and extends
the dimension of constraints for location estimation, which helps to distinguish multi-
ple locations with similar RSS fingerprints.

Applying such thoughts, Sun et al. proposed MoLoc [Sun et al. 2013a], a system
that notably reduces the large errors caused by fingerprint ambiguity. MoLoc employs
accelerometer and digital compass to determine relative location reachability and ac-
cordingly construct a motion database, which is then attached to the traditional finger-
print database. When a user sends a location query with his/her current fingerprints,
MoLoc calculates the most similar candidates, according to the joint probability re-
turned by the RSS fingerprints together with the motion database. MoLoc is an early
attempt to integrate user mobility into localization and proves promising for practical
applications, at the cost of an extra motion database.

4.1.2. Continuous path matching. Trajectories of mobile users can also mitigate fin-
gerprint ambiguity. Displacement and/or direction information obtained by dead-
reckoning impose relative geometrical constraints between consecutive location
queries along a trajectory. With these restrictions, fingerprint matching in localization
algorithms shifts from point matching to line fitting by embedding the entire trajectory
into the radio map, thus contributing to more accurate location estimates.

GloCal [Wu et al. 2013b] is an early attempt to embrace trajectories to enhance
outdoor GPS localization. Noting the trajectories maintained by dead-reckoning hold
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precise structures, (i.e., trajectory shapes), GloCal proposes to align the discretely erro-
neous GPS readings to the accurate locally monitored traces by coordinate transforma-
tion between the global and local coordinate systems. The integration of the local yet
accurate trajectory with the global but erroneous GPS samples significantly decreases
the GPS biases by 30% in average. Although prototyped for outdoor GPS applications,
GloCal can easily be extended to indoor scenarios, by replacing GPS readings with
initial fingerprint-matching results.

A similar idea is adopted in ACMI [Yoon et al. 2013], which employs FM broad-
cast signals for localization. ACMI performs path matching to improve localization
accuracy, which clusters multiple indoor spots along a mobile user’s trajectory. The
key insight is that, even though the RSS estimation at each individual location may
be ambiguous, the RSS changing pattern over a broader area may be unique with a
higher probability. To reduce computational complexity of path matching, a walk de-
tector is designed to monitor the topology of indoor spots, which regulates the distance
between two successive spots to relate only neighboring spots that satisfy the distance
constraints. Experimental results demonstrate that localization errors decrease from
10m~18mto 6m, along with the room identification accuracy from 59% to 89%.

A graph-based data fusion technique based on the well-known particle filter is pro-
posed in [Hilsenbeck et al. 2014] to process measurements from multiple sources of
sensor information as well as the knowledge of indoor maps. Experiments on a dataset
that spans about 20 kilometers in distance walked within four hours demonstrate ex-
cellent accuracy of 1.52m 50% of the time and 4.53m 90% of the time. Naguib et al.
[Naguib et al. 2013] also combined information of WiFi signals inertial sensor data
and indoor maps to achieve reliable and accurate location estimation with reported
median accuracy of less than one meter. Li et al. [Li et al. 2012a] devised algorithms
for reliable steps and heading direction detection, and accuracy step length estimation
and personalization and reports mean accuracy of 1.5m for the phone-in-hand case
and 2m for the phone-in-pocket case while integrated these modules with an indoor
floor map. The availability of mobility information, even with mere orientation, has
enabled accurate WiFi-based SAR (Synthesis Aperture Radar) on commodity mobile
devices, achieving tens of centimeter localization accuracy [Kumar et al. 2014]. Be-
sides WiFi-based positioning, inertial sensor data is also combined with other radio
signals like RFID and UWB [Zampella et al. 2013], using similar data fusing tech-
niques. In a nutshell, we conclude that embracing inertial sensed mobility information
in indoor localization appears to be an irresistible trend and inertial sensing will be an
indispensable component in future practical positioning system for smartphones.

Despite dramatic accuracy improvement, it is not all chocolates and flowers to lever-
age user mobility in the form of trajectory matching. The main drawback is that it may
incur higher energy consumption as well as longer time delay, which to some extent
limits the efficiency in energy-sensitive and real-time applications.

4.2. Mobility Decreases Deployment Cost

A primary bottleneck of fingerprint-based localization is the process of site survey
(a.k.a, calibration or war-driving) due to its expensive manpower and time overhead.
With the assistance of mobility, this site survey procedure can be liberated from spe-
cialists to ordinary users, from dedicated hardware to commodity devices, and most
critically, from conscious labour efforts to unconscious user participation. In essence,
mobility benefits localization by two aspects of power: 1) the potential to associate pre-
viously independent fingerprints or locations and 2) the ability to monitor user moving
trajectories. The former makes it possible to construct the reachability relationship be-
tween fingerprints in the fingerprint space, which can then be mapped to the physical
space to obtain the targeted radio map. The latter lays the foundation of progressive ra-
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Fig. 5. Fingerprint and physical space generated by LiF'S. Regarding the high dimension fingerprint space,
the walking distances among fingerprints, measured by footsteps, are preserved [Yang et al. 2012].

dio map construction from localized trajectories. Inspired by these new opportunities,
many researchers scramble to put forward a number of site-survey-free solutions to de-
crease the deployment costs of wireless localization. We roughly summarize them into
three categories: fingerprint space transformation, trajectory embedding with floor-
plan and with landmarks.

4.2.1. Fingerprint Space Transformation. In previous literature, wireless fingerprints of
different locations were considered independent from each other. Such independence
serves as an implicit hypothesis for location distinction via fingerprinting [Patwari and
Kasera 2007]. Although these fingerprints may be independent in the wireless signal
space, they can still be associated under certain semantics. Early attempts consider the
relationship between end-locations such as connectivity or reachability between adja-
cent locations, usually in the form of transition probability matrix and thus typically
modelled by HMM [Liu et al. 2010] [Zheng et al. 2008]. Nevertheless, most of them
simply assume the availability of the transition matrix, yet seldom provide details on
the feasibility or how to acquire the transition probabilities.

Breakthrough emerges with the availability of smartphone based inertial sensing,
where various human mobility information, including step counts, orientation, trajec-
tory, etc., can now be obtained in an automatic, harmonious way without extra hard-
ware deployment or even user attention. LiF'S [Yang et al. 2012] pioneers to construct
a connected fingerprint space using inertial sensor hints, which is further transformed
to the physical floor plan to bridge the fingerprints with the corresponding locations.
WILL [Wu et al. 2013a] adopts a similar idea, yet at the resolution of room level fin-
gerprints. Since WILL can be treated as a special case of LiFS, we briefly discuss the
principles of LiF'S in the following.

To construct the fingerprint space, LiFS automatically collects continuous acceler-
ation readings and the accompanying RSS observations, from ordinary smartphone
users during their routine work and living in the buildings. Footsteps are then detected
and counted as in Section 3.1.1 and used as the inter-fingerprints distance measure-
ments. Feeding the inter-fingerprint distances to the multi-dimensional scaling (MDS)
algorithm, a high dimension space named fingerprint space [Yang et al. 2012] is gen-
erated, where the mutual distances between points (which represent fingerprints) are
preserved (Figure 5). The fingerprint space is then mapped to the floor plan to asso-
ciate the fingerprints with their corresponding locations.The mapping is achieved by
exploring the spatial similarity between the fingerprint space and a transformed floor
plan, called stress-free floor plan [Yang et al. 2012]. The stress-free floor plan is a space
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which transforms a normal floor plan into a high dimension space by MDS, such that
the geometrical distances between the points in the new space reflect their walking
distances instead of the straight distances. The rationale behind such transformation
is that, due to the presence of obstacles such as walls, the walking distance between
two locations does not necessarily equal the geographical distance between them. Both
indicating the walking distance constraints of the same building, the stress-free floor
plan and fingerprint space are highly similar in spatial topology, which finally enables
fingerprints labeled with real locations.

Two key insights motivates the design of LiF'S: 1) With user mobility, originally sep-
arated fingerprints can be geographically connected by mobile trajectories, resulting
in the so called fingerprint space. 2) Although the data of any individual user may be
inappreciable, fusing a large amount of sensor hints from numerous participators can
make a big difference.

Focusing on fingerprint database construction, LiFS achieves remarkable perfor-
mance with the 95th percentile mapping error being lower than 4m and the average
error of 1.33m. The radio map generated by LiF'S is sufficient for use in numerous
fingerprint-based localization schemes, including classical ones like RADAR [Bahl and
Padmanabhan 2000] and Horus [Youssef and Agrawala 2005] and more recent ones
like [Liu et al. 2012]. Among all approaches we surveyed which aim to reduce deploy-
ment cost, LiF'S is probably the most backward compatible to classical RSS fingerprint-
based localization systems and thus can be easily integrated and serve for many exist-
ing and emerging localization techniques.

4.2.2. Trajectory Embedding with Floorplan. Considering indoor space, as a user continues
to walk and navigate through hallways and and turning around corners, his/her trajec-
tory grows distinguished especially in shape and thus the similarities for his/her tra-
jectory shrink progressively. Some researchers exploit this insight and propose novel
techniques for constructing fingerprint database and estimating user location. Among
these efforts, Zee [Rai et al. 2012] is a most representative system, which simultane-
ously estimates user locomotion and location.

Zee enables crowdsourced radio map construction by inferring a user’s location from
his moving trajectory, without any a prior about his initial location. Zee estimates a
user’s current location as follows. It initializes the user’s location as a uniformly dis-
tributed probability over all locations within the entire floor. Accounting for the struc-
ture imposed by the floor plan, Zee continuously updates the probability distribution
when the user moves on by eliminating all impossible paths that would require the
user to violate the physical walls or other obstacles. If the user walks for sufficient
length and, particularly, takes enough turns, the location probability is promising to
converge to the correct location since there may be probably only one path that can
be accommodated to the shape of the trajectory measured from user motion. This pro-
cedure is similar to embed a trajectory with specific shape into a 2D floor plan con-
sidering the physical constraints imposed by the floor plan. To do this, an augmented
particle filter is proposed to track the probability distribution of a user location during
his walk. In particular, to simultaneously estimate location, stride length, and head-
ing offset, Zee maintains a four-dimensional joint probability distribution function in
a particle filter, and learns all these values as the user walks.

Note that only mobility information is employed but no WiFi measurements are re-
quired during this trajectory embedding process. To eventually generate a fingerprint
database, however, Zee still expects users to record WiFi measurements during their
moving paths, which will then be annotated with the locations estimated from trajec-
tory embedding. Fusing abundant localized walking trajectories from numerous users,
Zee is finally capable of building a radio map for WiFi fingerprint-based localization.
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Fig. 6. Trajectories are utilized in different ways.

4.2.3. Trajectory Pinning with Landmarks. Given that inertial sensors can capture and
maintain user trajectories in an automatic and non-invasive way, it is possible to infer
user location using only these trajectories as inputs, as long as an initial start point
is known. The idea, typically known as dead-reckoning, is not fundamentally differ-
ent from ancient transportation and modern robotic navigation systems. However, it is
non-trivial to implement this idea for mobile applications due to error drifts caused by
noisy phone sensors and complicated human behaviours. In consequence, in addition
to notable efforts in reckoning user trajectories as accurately as possible (as in Section
3), researchers also strive to take advantage of reference landmarks both in outdoor
and indoor environments.

CompAcc [Constandache et al. 2010b] is an early exploration of infrastructure-
independent localization for outdoor scenarios. It leverages electronic compass and
accelerometer to measure the walking displacement and orientation of a mobile user,
based on which a trajectory is produced and further matched against walkable path
segments imposed by a digital map tile. Note a trajectory is a directional trail while
the digital map tile is a local area map downloaded based on the rough location of the
phone. With infrequent GPS samples, the phone can re-calibrate its location and uses
it as a reference for subsequent estimations. By doing this, the accumulative errors
arising from the inaccurate sensor readings can be successively resisted.

Translating a similar idea into indoor services encounters remarkable difficulties be-
cause of the unavailability of GPS. And researchers have investigated indoor context
landmarks as a substitution. These context landmarks vary from dedicated installed
reference anchors, to automatically discovered spots (i.e., spots with certain distinctive
signatures). As a seminal endeavor, Unloc [Wang et al. 2012] comprehensively explores
and exploits environment landmarks for location estimation. In Unloc, inertial sens-
ing of human behavior and ambient sensing of environment contexts are simultane-
ously conducted to discover underlying landmarks, which are further utilized as refer-
ence points, analogous to GPS samples in outdoor scenarios, to re-calibrate the dead-
reckoned locations. Unloc looks into a floor plan and identifies seed landmarks from
essential structures in the building. The rationale is that users will be forced to behave
in predictable ways at certain places such as elevators, stairs, building entrances, esca-
lators. For instance, building entrances are characterized by a visible drop in the GPS
confidence when the user moves from outdoors to indoors; elevators exhibit a distinct
accelerometer signature, emerging from the start and stop of the elevator. Translating
these predictable behaviors into sensor signatures, Unloc manages to identify intrin-
sic landmarks from smartphone sensor readings. Since the landmarks are spots with
known locations in the floor plan, they can be used to calibrate a user’s location when
he passes through one landmark. On this basis, Unloc can localize a user at any time
by incorporating the established dead reckoning on smartphones, without building a
fingerprint database or injecting extra reference anchors.
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(a) Overall score of LiF'S (b) Overall score of Zee (c) Overall score of Unloc

Fig. 7. Comparison of recent systems that decrease the deployment costs of WiFi based localization.

In addition to seed landmarks, Unloc also explores more organic yet unknown land-
marks by ambient sensing. These landmarks are postulated to be spots that exhibit
distinct ambient signatures across one or more sensing dimensions, which can be mag-
netism, acceleration, or WiFi domain. Taking magnetic hints as example, metals in
a specific location may produce unique and reproducible fluctuations on the magne-
tometer near that location, rendering a possible landmark. Since accurate locations of
such landmarks cannot be known a prior, Unloc employs unsupervised clustering algo-
rithms to identify individual landmarks from a large amount of sensor data gathered
from all phone users. Given a set of seed landmarks available, the incrementally rec-
ognized landmarks can then be associated with relative locations via dead reckoning,
which in turn will benefit dead reckoning itself (by providing denser reference points
for calibration). In summary, inertial sensing and ambient sensing hold complemen-
tary advantages: the precise trajectory structure preserved by inertial sensing lays
the important foundations to connect individual landmarks, while it is the accurate
location references from landmarks recognized by ambient sensing that put relative
trajectories into a floor plan.

Although both exploring user trajectories, Zee and Unloc exploits them in quite dif-
ferent ways, as illustrated in Figure 6. Finally, we present an overall comparison of
LiFS, Zee, and Unloc in terms of localization accuracy, deployment cost, bootstrap la-
tency, the extent of user participation, and the dependence of floor plan and sensors in
Figure 7.

4.3. Mobility Enriches Location Contexts

Location, although generally appears in the form of numerical coordinates, should
never be monotonous digits. Luxuriant contexts always accompany with physical lo-
cations, such as location labels, region functionality, surrounding circumstances, social
information, etc. In brief, location, as the most essential element of our physical space,
is abundant in its denotation yet rather simple in its basic connotation. Among various
location context information, floor plan is the most essential one that provides users
with a clear and useful view of the indoor space. As for all the localization approaches
mentioned above, floor plan is either a necessary input or a basic requirement for pro-
viding positioning services.

Unfortunately, it is never easy to acquire the rich accompanying contexts of loca-
tions. Even powerful companies such as Google also have to spend hefty costs of man-
power, financial resources and time to obtain, however, rather limited location contexts
in the indoor map service project. Requirements of specialized engineers and dedicated
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Fig. 8. A trace map evolves as traces being merged into it. Circles represent extracted reference points
(which correspond to rooms in reality), and stars represent user trajectories.

equipment, and the massive amount of buildings, increase both the difficulties and ex-
penses of generating semantically meaningful indoor maps.

Inertial sensor hints, which act as an efficient interface to obtain user mobility
through smartphones, make it possible to construct indoor floor plan automatically
and dynamically. A floor plan is a graph that provides the region layout and space
partition of a building. In other words, floor plan is one way of presenting the indoor
space connections and obstructions. Hence, human mobility, which is constrained to
the indoor space reachability, can in turn reveals the structure of building layouts and
thus is possible to sketch the floor plan. Generally, the task of portraying a floor plan is
twofold: 1) Space regionalization: partition the entire space into pieces of areas, which
are usually separated by walls or other obstacles; 2) Functionality recognition: label
each partitioned area with a specific category of indoor space function, such as rooms,
halls, stairs, corridors, etc.

4.3.1. Space Regionalization. To partition the entire space, trajectories collected from
different users are fused and joined together to form the basic topology of the floor plan.
One trajectory is spliced with another by exploring the common landmarks they have
both passed through. For instance, if two trajectories both start from the same building
entrance, they can be joined at the start point. Figure 8 illustrates an example of
the incremental generation of the floor plan skeleton, where trajectories are gradually
added and fitted. When embracing sufficient trajectories that cover the entire space, a
drafted floor plan shows up.

Walkie-Markie [Shen et al. 2013] is a recent, successful system that implements the
idea to produce a hallway map. Without floor plan available a prior, Walkie-Markie
could not search the “seed landmarks” for location estimation even at the very initial
stage. Instead, Walkie-Markie explores the novel WiFi-Marks as landmarks for loca-
tion reference and calibration. WiFi-Marks are defined as locations where the RSS
trend of a certain AP changes, which prove to be excellent landmarks due to their sta-
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bility and robustness. In addition to using the WiFi-defined landmarks to constrain
drifting in dead reckoning, Walkie-Markie further exploits them to align and join dif-
ferent user trajectories, and eventually produces a hallway map.

While the hallway map can be treated as the side product of Walkie-Markie,
CrowdInside [Alzantot and Youssef 2012] and [Jiang et al. 2013a] completely target
at indoor floor plan generation. In CrowdInside, the procedure is detailed as follows:

(1) Trajectory segmentation. Segments are straight parts of the trajectory that are
separated by either turns or pauses, which are supposed to be inside the same
area (room/corridor) .

(2) Segment classification. The module is performed to distinguish segments in the
corridors from those inside rooms. A decision tree based classifier, using average
time spent per step, segment length, and trace density as inputs, is carried out for
classification.

(3) Segment clustering. A density-based clustering algorithm, DBSCAN, is put on all
segments that are classified as rooms to find the number, boundaries, and center
locations of the unknown rooms.

(4) Shaping. Finally, to estimate the shapes of a room (or the corridors), the a—shape
is calculated based on the corresponding point set, i.e., points that are associated
with the room.

Similarly, in [Jiang et al. 2013a], an automatic floor plan construction system based
on room WiFi fingerprints and user motion information, the floor plan is constructed
via three steps: (1) room adjacency graph construction to identify the adjacency of
rooms and construct a room adjacency graph; (2) hallway layout learning to estimate
room sizes and order rooms along each hallway, using crowd-based motion sensing
on smartphones, and (3) force directed dilation to adjust room sizes and optimize the
overall floorplan accuracy.

4.3.2. Functionality Recognition. Once the space is partitioned and identified as individ-
ual regions, i.e., rooms, halls, or corridors, higher level of semantic can be attached to
each region to extend the contexts of the generated floor plan. These semantics include
region functionality and room types, shop brands in a mall or room doorplate infor-
mation, user counts in a specific room, social events, etc. Particularly, user mobility is
closely related to region functionality and room types since user and crowd behaviors
are constrained by specific patterns at certain regions, which is also the underpinning
insight for the feasibility of mining global landmarks for localization as what Unloc has
done. Considering modern office buildings, four types of functional ares are involved
in:

— Rooms. User behaviors in office rooms also exhibit particular patterns. Users in
rooms stay stationary most of the time. Even when users move inside the room,
their trajectories incline to be short and contain more turns. Moreover, detecting co-
location of people can also further differentiate semantic functions, such as meeting
room, classroom, or normal office room.

— Corridors. Corridors. Despite a few users may stop for a while in corridors, most of
users are always walking. Consequently, users do not spend long time in the corridor.
In addition, user trajectories generated in the corridor are dense, mostly straight
and long, and with fewer turns.

— Elevators. Elevators are distinctive landmarks in a building because RF signals
are blocked and the acceleration patterns are unique in the elevators. The acceler-
ation variance sequence of elevator-taking is defined as follows: a normal walking
period, a short dwell time for waiting, walking into the elevator, a weight-loss (or
over-weight) period, standing statically inside, followed by another over-weight (or
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Fig. 9. Distinctive accelerometer signature of using the elevator.

weight-loss), and walking out of the elevator. Figure 9 shows examples of such ele-
vator motion traces.

— Stairs. At first sight, it is difficult to differentiate between stairs and corridors.
Nevertheless, acceleration patterns provide clues to tell the two apart. For stairs, the
variance of acceleration is much larger, which usually varies from 4m/s? to 10m/s?
as observed from real user traces.

As can be seen, Unloc and CrowdInside both explore these basic properties of differ-
ent functional regions in terms of mobility to identify certain spots for landmarks (or
anchors in CrowdInside). CrowdInside further exploits the mobile trajectories to differ-
entiate between rooms and corridors. Regarding those higher level location contexts,
extensive sensing information, beyond mobility, must be incorporated and advanced
pattern recognition or machine learning techniques should be employed. In brief, we
review and envision the solutions to perceive rich contexts for locations.

— Incorporate ambient sensing with various types of sensors built on the phone, in-
cluding inertial sensors as well as other ones like camera and microphone, to in-
vestigate richer sensing hints, which can be used to fingerprint some locations. Sur-
roundSense combines such ambient sensing scheme together with inertial sensing
to fingerprint logical locations across multiple dimensions and achieves an average
accuracy of 87% when all sensing modalities are employed. Map service products
such as Google Maps and Baidu Maps have employed high-resolution cameras to
scan and construct live indoor station view, which is analogous to the street view for
outdoor maps and thus creates expensive costs.

— Integration with social networks and user visiting patterns. With growing interests
in location-based social networks such as Foursqure, Facebook Places, Whrrl and
location-based mobile games like Google Ingress, users who explore places, write
reviews, and share their locations would generate plenty of semantic labels. Fusing
and mining these user-generated location tags, it is possible to annotate indoor lo-
cations with rich contexts automatically and precisely [Chon et al. 2012] [Lian and
Xie 2011] [Ye et al. 2011].

Location contexts are as significant as the location itself, by making location coordi-
nates meaningful, understandable, and eventually attractive as places with distinctive
semantics, visual views, specific people, and/or events of interests, etc. While user mo-
bility sheds light on extending the location contexts with low costs in an automatic
way, it, as an open issue, still requires adequate research attention and explorations.
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5. HOW TO HANDLE MEASUREMENT ERRORS

In the context of smartphone-based indoor localization with inertial sensors, diverse
user-phone states constitute the main obstacles that prevent accurate measurement
estimates. For example, unconstrained smartphone placements on users may lower
step detection accuracy with a generic detection model, while stride length deviations
among users make displacement estimation challenging. Therefore, we review exist-
ing works that strive to alleviate these measurement errors from two aspects in this
section: generate estimates by user modeling and statistics; and combine constraints
from external sources.

5.1. Internal Introspection

As discussed in Section 3, basic measurements include step detection, stride length
estimation, and heading estimation. Pioneer works have been conducted on making
step detection and stride length estimation more robust for users, yet few works have
considered the influence of user models for heading estimation. Therefore we focus
on methods of handling measurement errors in detecting steps and estimating stride
length. Furthermore, as a high level of measurement, user trajectories possess the
potential to alleviate errors and will be discussed.

Step detection: Most step detection methods can achieve high accuracy of mea-
surements by analyzing temporal or spectral features of sensor data (Section 3.1.1).
These methods are suitable for fixed sensor placement (e.g., waisted-mounted and foot-
mounted). However, the interaction between users and smartphones are more com-
plex. Measurement error source points to the diverse smartphone placements as sig-
nal patterns change with placements. The study conducted in [Brajdic and Harle 2013]
compared various step detection algorithms for different smartphone placements and
showed that weakness exists for each method. A direction of handling such errors is to
model each placement and apply detection method accordingly. The placements can be
categorized according the usual manners of users [Ayub et al. 2012] [Susi et al. 2013]
[Renaudin et al. 2012]:

— Static. The user’s location does not change during the detection phase. For example,
the user may step in the spot when answering the phone.

— Quasi stable. The user is walking, while the phone is relatively fixed to the user. For
instance, the user may be texting, playing phone games, or the phone is placed in
the trousers.

— Swinging. The user holds her phone in the normally swinging hand while walking.

— Irregular. All irregular motions not belonging to the above cases. For instance, the
user is searching in her handbag for the phone.

With the placement modes defined, simple pattern recognition scheme [Ayub et al.
2012] or machine learning method [Susi et al. 2013] can be adopted to detect place-
ments automatically. Thereafter, suitable step detection schemes can be selected for
specific placement modes.

Stride length estimation: The difficulty of stride length estimation originates
from the diversity of users (such as gender, height, walking speed, etc). Different mod-
els have been proposed to depict important factors to estimate stride length. A Gaus-
sian model is adopted in [Constandache et al. 2010a], where the mean of the stride
length needs to be measured by users manually, and the deviation of the length is set
empirically. The stride length (s) and frequency (f) with body fixed sensors are shown
to be linearly related [Margaria and Margaria 1976], which enables a linear model for
stride length estimation [Cho et al. 2010]: s = a - f + b, where a and b are user depen-
dant parameters. A more complex model adds a random walk parameter w to estimate
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step length: s = a - f + b + w, where w describes the step length asymmetry of both
legs [Ladetto 2000] and is modeled using a Gaussian distribution with deviation pro-
portional to the step frequency [Gusenbauer et al. 2010]. Biomechanical studies show
that the user’s step length and height are directly proportional in general [Rose and
Gamble 2006]. Therefore, a linear model explicitly incorporating user’s step frequency
f and height h is proposed: s = h - (a - f + b) + ¢, where a,b and ¢ are parameters
[Renaudin et al. 2012].

These models all depend on user calibration and thus are more accurate than gen-
eral estimation methods, though the calibration phase may be of high cost. While
phone placement modes have been shown to influence step detection accuracy, how
they impact stride length estimation need further investigation [Ayub et al. 2012].

Trajectory estimation: User trajectories constitute high level abstraction of sen-
sor readings and user mobilities. By collecting and merging multiple user trajectories,
it is possible to reveal the spatial characteristics of indoor environment and hence fa-
cilitate localization [Yang et al. 2012] [Rai et al. 2012], navigation [Purohit et al. 2013],
and floor plan construction [Shen et al. 2013] [Jiang et al. 2013a]. Different from the
outdoor trajectories, which are mostly GPS and time stamp series, indoor user tra-
jectories are more challenging due to the complex user-phone interaction and diverse
sensor readings. Therefore, outdoor trajectory estimation and error control methods
[Zheng and Zhou 2011] cannot be directly adopted.

The redundancy of user trajectories brings a new opportunity of measurement error
control. Note that error control discussed above mainly resort to finer user modeling.
However, sensor malfunctioning and abnormal user behavior renders these methods
invalid. Numerous user trajectories enable statistical models, especially robust sta-
tistical tools, to filter out abnormal data that may jeopardize the trajectory merging
results [Zhang et al. pear].

Specifically, given a physical route, each user walking along the route may collect
a trajectory. The goal is to estimate the distance between two sample locations along
the route. A common method is to use the step counts of a user, which is transformed
from the accelerometer readings of a smartphone, to reflect the distance. Yet different
users have different strides, and users may collect outlier data due to multiple reasons
(e.g., a user may cheat the smartphone sensor by abnormal movement). Therefore, it is
necessary to make use of the redundancy of user data to obtain an accurate estimate.

A family of robust statistical estimators are effective in alleviating the influence
of outlier data when acquiring an estimate between sample points. Furthermore, a
multidimensional estimator, termed minimum covariance determinant, is adopted in
[Zhang et al. pear] to estimate the distances among sample points along a physical
route. Interestingly, a unique ID is associated with each user, which is revealed to be
normal or abnormal by the estimation result. The abnormal users are hence can be ex-
cluded when estimating trajectories in other routes. This is very essential in the area
where few users step into, as even robust statistical tools may fail in this scenario.
For example, if a route has received 3 trajectories, among which 2 trajectories are ab-
normal and 1 is normal. It is obvious that no statistical estimator can make accurate
estimation. However, if we have the ID of these 3 users and have tracked their perfor-
mance in other areas where user redundancy exists, we can still obtain a satisfiable
estimate by eliminating the 2 outlier users.

Robust statistical methods are promising as more and more mobile trajectory-based
applications are based on crowdsourcing [Wang et al. 2012] [Yang et al. 2012] [Shen
et al. 2013], yet in large open environments where user movements are difficult to
characterize, it is still hard to obtain accurate estimates. Further efforts are needed to
resolve this issue.
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Table V. Typical landmarks as mobility references for error control.

Citation Landmark Type Signature

[Constandache et al. 2010a]  beacon node deployed manually primary audio tone

[Wang et al. 2012] elevator, escalator, stair primary accelerometer pattern

[Shen et al. 2013] pathway tipping point primary RSS trend

[Li et al. 2012b] beacon node deployed manually primary TDOA of radio and audio signal
[Alzantot and Youssef 2012]  entrance, elevator, escalator, stair ~ primary GPS signal, inertial sensor pattern
[Constandache et al. 2010a]  encountered user secondary  audio tone

[Wang et al. 2012] organic landmark secondary  sensor feature cluster

5.2. External Facilitation

Other than handling errors by solely inspecting the sensor data, the measurements
can be further improved by user mobility references, i.e., landmarks and floor plans.

5.2.1. Landmarks. The landmarks can be detected from the unique patterns reflected
through smartphone sensor readings. For example, an elevator imposes a distinct pat-
terns on the smartphone’s accelerometer; while a corridor-corner may only receive a
unique set of WiFi access points [Wang et al. 2012]. These landmarks (or more accu-
rately, unique signal patterns of landmarks) exist in various places of a typical indoor
environment, making them valuable to assist rectifying a smartphone user’s positions
under motion. The rationale of using landmarks lies in that, the locations of these
landmarks serve as restarting locations for pedestrians, hence dividing a user’s long
trajectories into multiple short trajectories and significantly reducing the accumula-
tive measurement errors from inertial sensors [Li et al. 2012b] [Alzantot and Youssef
2012] [Shen et al. 2013]. Table V gives a brief summarization of these landmarks.

As the landmarks themselves are reflected from received patterns of sensors, they
are possibly erroneous. However, the uniqueness and large distances from other non-
landmark patterns make landmarks more robust and accurate than simply using iner-
tial sensor readings. In fact, recent studies even adopted secondary landmarks, which
are summarized directly from user trajectories, to help recalibrate other users’ loca-
tions. In [Constandache et al. 2010a], beacon nodes deployed in the environment play
the role of primary landmarks and reset users’ positions within the range. And these
users with fresh restarting positions in turn, being secondary landmarks, correct loca-
tions of other encountered users. In [Wang et al. 2012], primary landmarks are certain
recognizable structures in the building (e.g. stairs, elevators, entrances, escalators),
where sensor signatures are stored in advance; while ambient signatures across one
or many sensing dimensions, which constitute secondary landmarks (e.g. a spot not
covered by WiFi, a water-fountain), are learnt dynamically by clustering more and
more users’ sensing data.

5.2.2. Floor Plans. Similar to the idea of applying electronic maps to rectify users’ po-
sitions in outdoor localization schemes [Constandache et al. 2010b] [Zhu et al. 2013],
integrating the constraints of floor plans alleviates the inertial sensor errors in indoor
localization. There are roughly two means to use a floor plan:

Geometry mapping. Mapping user trajectories to floor plans is effective in weaken-
ing sensor drift errors. The rationale is that, though user trajectories may be distorted
due to sensor drift, their overall geometric shape should be similar to that of the floor
plan. Different geometric abstraction models can be adopted for mapping. For exam-
ple, a link-node model is applied in [Lan and Shih 2013], while a stress-free floor plan
is proposed in [Yang et al. 2012].

Position filtering. The other way of using a floor plan is to exclude unlikely po-
sitions for walking users, such as obstacles and walls. A commonly used technique
is Particle Filter, which has been successfully applied in locating mobile robots [Fox
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et al. 2001] and pedestrian tracking with foot-mounted sensors [Klepal et al. 2008]
[Woodman and Harle 2008]. Table VI summarizes Particle Filters used in pedestrian
localization with smartphones.

Particle Filtering is a non-parametric form of Bayesian estimation, which consists
of many particles. In the context of user localization, a typical particle may represent
the user’s possible physical position and heading. Positions and heading values possess
different likelihood. Hence a weight value is assigned to each particle, which reflects
the probability of the particle being correct according to the accumulated information.
Generally, there are three steps to run an iteration of particle filtering:

— Particle propagation. Particles update their values according to certain motion mod-
els. For example, a constant velocity with a Gaussian noise can be used to update
the position of a particle.

— Particle correction. Particles update their weights according to their fitness to the
environment. For example, if a particle crosses a wall during propagation, the
weight of that particle should be set to 0.

— Particle resampling. A new particle set is generated in proportion to the weights of
particles in the current set.

The particle correction step is of great concern in the literature, as external con-
straints can be added in this step to eliminate inappropriate particles. The basic con-
straint is the floor plan, which defines the accessible area for particles. Another com-
mon constraint is WiFi fingerprint, which is helpful for differentiating similar par-
ticle trajectories [Thiagarajan 2011] [Kothari et al. 2012]. A recent study attempted
to replace the requirement for a detailed knowledge of floor plan by using distances
to known reference points (corner, stairs, elevators and WiFi estimation) to restrain
particles [Radu and Marina 2013].

The influences of particle propagation are twofold: Firstly, the choice of motion mod-
els (e.g. direction error distribution and stride length distribution) is important to en-
sure particle survival rate. Specifically, as the number of particles that can be simu-
lated is finite due to computational constraints, if all particles end up violating a floor
plan constraint, the filter may end up producing no output at all. Towards this is-
sue, mixture models [Thiagarajan 2011], other than simple Gaussian models [Kothari
et al. 2012] [Radu and Marina 2013], are investigated and shown to have better sur-
vival rate. Secondly, as users have different stride lengths, using a generic model (e.g.
Gaussian model) is inappropriate. In fact, the stride lengths vary even for the same
user from time to time. A direct approach for this problem is to incorporate the stride
length, or the parameters of a personalized step model, as a component of a particle
[Rai et al. 2012] [Li et al. 2012a].

6. CONCLUSIONS

In this survey, we reviewed the principles of measuring human mobility via smart-
phones, and the emerging trend in mobility assisted wireless indoor localization. Back
to decades ago, such mobility information is accessible only in the military or robotics
communities leveraging dedicated sensors. Modern smartphones have reshaped the
landscape of human-centric computing and we have identified numerous types of mo-
bility information derivable via built-in sensors. We demonstrated how to incorporate
mobility to improve localization accuracy, decrease deployment cost, and enrich lo-
cation context. Due to noisy sensor data, unconstrained phone placement and com-
plicated human activities, we also discussed prevalent error control mechanisms for
mobility measurement and localization.
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Table VI. Types of particle filter designs for smartphone-based pedestrian localization.

Citation Sensor Particle Model Feature Accuracy

. . - . . incorporate initial position
[Thiagarajan 2011] A+G+W {position, direction} and WiFi information in particles 3 feet

. - . . incorporate stride length .
[Rai et al. 2012] A+C+G {position, stride length, heading offset} estimation in particles 80%ile 2.3m
[Li et al. 2012a] A+C+G {position, step length coefficients} incorporate pgrsonahzed step 1.5 —2m

model in particles
. o . . impose constraints of robot map

[Kothari et al. 2012] A+C+G+W  {position, direction} and WiFi fingerprint 5m
[Kim et al. 2012] A+C+W {position} assist WiFi fingerprinting < 2.4m
[Radu and Marina 2013] A+C {activity, distance, direction} combine location tracking 2—3m

and activity recognition

C - compass, A - accelerometer, G - gyroscope, W - WiFi

Despite pioneer efforts in mobility measurements and mobility assisted wireless lo-
calization, the realm is still in its infancy and continues to develop from diverse per-
spectives:

Orthogonal to inertial sensors, wireless signals can also hint mobility. Seminal work
exploited the ubiquitous WiFi signals to recognize gestures via micro-Doppler effects
[Pu et al. 2013] and estimate walking speed by PHY layer information [Jiang et al.
2013b]. Future research is envisioned to incorporate inertial sensors and wireless mod-
ules on smartphones synergically to derive mobility information pervasively and non-
intrusively.

Previous smartphone based inertial sensing often abstracts pedestrian mobility as
steps, and ignores that human body is non-rigid. A notable shift nowadays is to model
detailed locomotion properties based on human kinematics. However, most of these
models are valid only with particular sensor placement (e.g. foot-mounted). It remains
open how to refine them for unconstrained phone placement to capture precise mobility
information and reduce modeling errors.

Another development trend is the finer-grained mobility measurement by smart
wearable devices, such as wristbands, watches, necklaces, glasses, etc. Pioneer prod-
ucts like Samsung’s Galaxy Gear and Google Glass have attracted numerous enthu-
siasts all over the world. Interworking with smartphones, these smart wearables, at-
tached firmly to human body, are holding great expectations of highly accurate mobility
sensing.

Finally, mobility increases more than localizability. The paradigm of localization has
evolved from yielding accurate location coordinates to mining diverse location context.
With mobile users round-the-clock, discrete surrounding information such as ambient
lights, sounds, temperature, air conditions, etc., is now connected via human activi-
ties, social behaviors and even moods. This in turn extends the connotation of location
context, and brings deeper insight on individuals, societies, and the nature. Upon this
promising frontier though, reside significant challenges in integrating complementary
sensing modalities and advancing spatial-temporal analysis with noisy, crowdsourced
data, and these leave largely open and attractive research opportunities.
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